sortix-mirror/kernel/x86-family/gdt.cpp

316 lines
8.7 KiB
C++
Raw Normal View History

/*******************************************************************************
2011-08-05 12:25:00 +00:00
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012, 2013, 2014.
2011-08-05 12:25:00 +00:00
This file is part of Sortix.
2011-08-05 12:25:00 +00:00
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
2011-08-05 12:25:00 +00:00
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
2011-08-05 12:25:00 +00:00
You should have received a copy of the GNU General Public License along with
Sortix. If not, see <http://www.gnu.org/licenses/>.
2011-08-05 12:25:00 +00:00
x86-family/gdt.cpp
Initializes and handles the GDT and TSS.
2011-08-05 12:25:00 +00:00
*******************************************************************************/
2011-08-05 12:25:00 +00:00
#include <assert.h>
2013-06-20 00:51:54 +00:00
#include <stdint.h>
#include <string.h>
2013-06-20 00:51:54 +00:00
#include <sortix/kernel/cpu.h>
#include <sortix/kernel/registers.h>
2013-06-20 00:51:54 +00:00
#include "gdt.h"
2011-08-05 12:25:00 +00:00
2013-06-20 00:51:54 +00:00
namespace Sortix {
namespace GDT {
struct gdt_entry
{
uint16_t limit_low;
uint16_t base_low;
uint8_t base_middle;
uint8_t access;
uint8_t granularity;
uint8_t base_high;
};
struct gdt_entry64
{
uint16_t limit_low;
uint16_t base_low;
uint8_t base_middle;
uint8_t access;
uint8_t granularity;
uint8_t base_high;
uint32_t base_highest;
uint32_t reserved0;
} __attribute__((packed));
struct gdt_ptr
2011-08-05 12:25:00 +00:00
{
2013-06-20 00:51:54 +00:00
uint16_t limit;
#if defined(__i386__)
uint32_t base;
#else
uint64_t base;
2011-10-02 14:00:02 +00:00
#endif
2013-06-20 00:51:54 +00:00
} __attribute__((packed));
2011-10-02 14:00:02 +00:00
2013-06-20 00:51:54 +00:00
#if defined(__i386__)
struct tss_entry
{
uint32_t prev_tss; // The previous TSS - if we used hardware task switching this would form a linked list.
uint32_t esp0; // The stack pointer to load when we change to kernel mode.
uint32_t ss0; // The stack segment to load when we change to kernel mode.
uint32_t esp1; // Unused...
uint32_t ss1;
uint32_t esp2;
uint32_t ss2;
uint32_t cr3;
uint32_t eip;
uint32_t eflags;
uint32_t eax;
uint32_t ecx;
uint32_t edx;
uint32_t ebx;
uint32_t esp;
uint32_t ebp;
uint32_t esi;
uint32_t edi;
uint32_t es; // The value to load into ES when we change to kernel mode.
uint32_t cs; // The value to load into CS when we change to kernel mode.
uint32_t ss; // The value to load into SS when we change to kernel mode.
uint32_t ds; // The value to load into DS when we change to kernel mode.
uint32_t fs; // The value to load into FS when we change to kernel mode.
uint32_t gs; // The value to load into GS when we change to kernel mode.
uint32_t ldt; // Unused...
uint16_t trap;
uint16_t iomap_base;
} __attribute__((packed));
#elif defined(__x86_64__)
struct tss_entry
{
uint32_t reserved0;
uint64_t stack0;
uint64_t stack1;
uint64_t stack2;
uint64_t reserved2;
uint64_t ist[7];
uint64_t reserved3;
uint16_t reserved4;
uint16_t iomap_base;
} __attribute__((packed));
2011-10-02 14:00:02 +00:00
#endif
#if defined(__i386__)
const size_t GDT_NUM_ENTRIES = 9;
const size_t GDT_FS_ENTRY = 7;
const size_t GDT_GS_ENTRY = 8;
#else
2013-06-20 00:51:54 +00:00
const size_t GDT_NUM_ENTRIES = 7;
#endif
2013-06-20 00:51:54 +00:00
static struct gdt_entry gdt_entries[GDT_NUM_ENTRIES];
static struct tss_entry tss_entry;
const uint8_t GRAN_64_BIT_MODE = 1 << 5;
const uint8_t GRAN_32_BIT_MODE = 1 << 6;
const uint8_t GRAN_4KIB_BLOCKS = 1 << 7;
void SetGate(int32_t num, uint32_t base, uint32_t limit, uint8_t access, uint8_t gran)
{
struct gdt_entry* entry = (struct gdt_entry*) &gdt_entries[num];
entry->base_low = base >> 0 & 0xFFFF;
entry->base_middle = base >> 16 & 0xFF;
entry->base_high = base >> 24 & 0xFF;
entry->limit_low = limit & 0xFFFF;
entry->granularity = (limit >> 16 & 0x0F) | (gran & 0xF0);
entry->access = access;
}
void SetGate64(int32_t num, uint64_t base, uint32_t limit, uint8_t access, uint8_t gran)
{
struct gdt_entry64* entry = (struct gdt_entry64*) &gdt_entries[num];
entry->base_low = base >> 0 & 0xFFFF;
entry->base_middle = base >> 16 & 0xFF;
entry->base_high = base >> 24 & 0xFF;
entry->base_highest = base >> 32;
entry->limit_low = limit & 0xFFFF;
entry->granularity = (limit >> 16 & 0x0F) | (gran & 0xF0);
entry->access = access;
entry->reserved0 = 0;
}
void Init()
{
#if defined(__i386__)
const uint8_t gran = GRAN_4KIB_BLOCKS | GRAN_32_BIT_MODE;
#elif defined(__x86_64__)
const uint8_t gran = GRAN_4KIB_BLOCKS | GRAN_64_BIT_MODE;
2011-10-02 14:00:02 +00:00
#endif
2013-06-20 00:51:54 +00:00
SetGate(0, 0, 0, 0, 0); // Null segment
SetGate(1, 0, 0xFFFFFFFF, 0x9A, gran); // Code segment
SetGate(2, 0, 0xFFFFFFFF, 0x92, gran); // Data segment
SetGate(3, 0, 0xFFFFFFFF, 0xFA, gran); // User mode code segment
SetGate(4, 0, 0xFFFFFFFF, 0xF2, gran); // User mode data segment
WriteTSS(5, 0x10, 0x0);
#if defined(__i386__)
SetGate(GDT_FS_ENTRY, 0, 0xFFFFFFFF, 0xF2, gran);
SetGate(GDT_GS_ENTRY, 0, 0xFFFFFFFF, 0xF2, gran);
#endif
2013-06-20 00:51:54 +00:00
// Reload the Global Descriptor Table.
volatile struct gdt_ptr gdt_ptr;
gdt_ptr.limit = (sizeof(struct gdt_entry) * GDT_NUM_ENTRIES) - 1;
gdt_ptr.base = (uintptr_t) &gdt_entries;
asm volatile ("lgdt (%0)" : : "r"(&gdt_ptr));
// Switch the current data segment.
asm volatile ("mov %0, %%ds\n"
"mov %0, %%es\n"
"mov %0, %%ss\n" : :
"r"(KDS));
#if defined(__i386__)
asm volatile ("mov %0, %%fs" : : "r"(GDT_FS_ENTRY << 3 | URPL));
asm volatile ("mov %0, %%gs" : : "r"(GDT_GS_ENTRY << 3 | URPL));
#elif defined(__x86_64__)
asm volatile ("mov %0, %%fs" : : "r"(UDS | URPL));
asm volatile ("mov %0, %%gs" : : "r"(UDS | URPL));
#endif
2013-06-20 00:51:54 +00:00
// Switch the current code segment.
#if defined(__i386__)
asm volatile ("push %0\n"
"push $1f\n"
"retf\n"
"1:\n" : :
"r"(KCS));
#elif defined(__x86_64__)
asm volatile ("push %0\n"
"push $1f\n"
"retfq\n"
"1:\n" : :
"r"(KCS));
#endif
// Load the task state register - The index is 0x28, as it is the 5th
// selector and each is 8 bytes long, but we set the bottom two bits (making
// 0x2B) so that it has an RPL of 3, not zero.
asm volatile ("ltr %%ax" : : "a"(0x2B));
}
// Initialise our task state segment structure.
void WriteTSS(int32_t num, uint16_t ss0, uintptr_t stack0)
{
// First, let's compute the base and limit of our entry in the GDT.
uintptr_t base = (uintptr_t) &tss_entry;
2014-04-12 16:11:27 +00:00
uint32_t limit = sizeof(tss_entry) - 1;
2013-06-20 00:51:54 +00:00
// Now, add our TSS descriptor's address to the GDT.
#if defined(__i386__)
SetGate(num, base, limit, 0xE9, 0x00);
#elif defined(__x86_64__)
SetGate64(num, base, limit, 0xE9, 0x00);
#endif
// Ensure the descriptor is initially zero.
memset(&tss_entry, 0, sizeof(tss_entry));
#if defined(__i386__)
tss_entry.ss0 = ss0; // Set the kernel stack segment.
tss_entry.esp0 = stack0; // Set the kernel stack pointer.
// Here we set the cs, ss, ds, es, fs and gs entries in the TSS.
// These specify what segments should be loaded when the processor
// switches to kernel mode. Therefore they are just our normal
// kernel code/data segments - 0x08 and 0x10 respectively, but with
// the last two bits set, making 0x0b and 0x13. The setting of these
// bits sets the RPL (requested privilege level) to 3, meaning that
// this TSS can be used to switch to kernel mode from ring 3.
tss_entry.cs = KCS | 0x3;
tss_entry.ss = tss_entry.ds = tss_entry.es = tss_entry.fs = tss_entry.gs = KDS | 0x3;
#elif defined(__x86_64__)
(void) ss0;
tss_entry.stack0 = stack0;
2011-08-05 12:25:00 +00:00
#endif
}
2013-06-20 00:51:54 +00:00
uintptr_t GetKernelStack()
2013-06-20 00:51:54 +00:00
{
#if defined(__i386__)
return tss_entry.esp0;
2013-06-20 00:51:54 +00:00
#elif defined(__x86_64__)
return tss_entry.stack0;
#endif
}
void SetKernelStack(uintptr_t stack_pointer)
{
assert((stack_pointer & 0xF) == 0);
#if defined(__i386__)
tss_entry.esp0 = (uint32_t) stack_pointer;
#elif defined(__x86_64__)
tss_entry.stack0 = (uint64_t) stack_pointer;
2013-06-20 00:51:54 +00:00
#endif
}
#if defined(__i386__)
uint32_t GetFSBase()
{
struct gdt_entry* entry = gdt_entries + GDT_FS_ENTRY;
return (uint32_t) entry->base_low << 0 |
(uint32_t) entry->base_middle << 16 |
(uint32_t) entry->base_high << 24;
}
uint32_t GetGSBase()
{
struct gdt_entry* entry = gdt_entries + GDT_GS_ENTRY;
return (uint32_t) entry->base_low << 0 |
(uint32_t) entry->base_middle << 16 |
(uint32_t) entry->base_high << 24;
}
void SetFSBase(uint32_t fsbase)
{
struct gdt_entry* entry = gdt_entries + GDT_FS_ENTRY;
entry->base_low = fsbase >> 0 & 0xFFFF;
entry->base_middle = fsbase >> 16 & 0xFF;
entry->base_high = fsbase >> 24 & 0xFF;
asm volatile ("mov %0, %%fs" : : "r"(GDT_FS_ENTRY << 3 | URPL));
}
void SetGSBase(uint32_t gsbase)
{
struct gdt_entry* entry = gdt_entries + GDT_GS_ENTRY;
entry->base_low = gsbase >> 0 & 0xFFFF;
entry->base_middle = gsbase >> 16 & 0xFF;
entry->base_high = gsbase >> 24 & 0xFF;
asm volatile ("mov %0, %%gs" : : "r"(GDT_GS_ENTRY << 3 | URPL));
}
#endif
2013-06-20 00:51:54 +00:00
} // namespace GDT
} // namespace Sortix