/******************************************************************************* Copyright(C) Jonas 'Sortie' Termansen 2011, 2012, 2014. This file is part of Sortix. Sortix is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Sortix is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Sortix. If not, see . x86-family/memorymanagement.cpp Handles memory for the x86 family of architectures. *******************************************************************************/ #include #include #include #include #include #include #include #include #include #include "multiboot.h" #include "memorymanagement.h" #include "msr.h" namespace Sortix { extern size_t end; } // namespace Sortix namespace Sortix { namespace Page { void InitPushRegion(addr_t position, size_t length); size_t pagesnotonstack; size_t stackused; size_t stackreserved; size_t stacklength; size_t totalmem; kthread_mutex_t pagelock; } // namespace Page } // namespace Sortix namespace Sortix { namespace Memory { addr_t currentdir = 0; void InitCPU(); void AllocateKernelPMLs(); int SysMemStat(size_t* memused, size_t* memtotal); addr_t PAT2PMLFlags[PAT_NUM]; void InitCPU(multiboot_info_t* bootinfo) { const size_t MAXKERNELEND = 0x400000UL; /* 4 MiB */ addr_t kernelend = Page::AlignUp((addr_t) &end); if ( MAXKERNELEND < kernelend ) { Log::PrintF("Warning: The kernel is too big! It ends at 0x%zx, " "but the highest ending address supported is 0x%zx. " "The system may not boot correctly.\n", kernelend, MAXKERNELEND); } Page::stackreserved = 0; Page::pagesnotonstack = 0; Page::totalmem = 0; Page::pagelock = KTHREAD_MUTEX_INITIALIZER; if ( !( bootinfo->flags & MULTIBOOT_INFO_MEM_MAP ) ) Panic("memorymanagement.cpp: The memory map flag was't set in " "the multiboot structure. Are your bootloader multiboot " "specification compliant?"); // If supported, setup the Page Attribute Table feature that allows // us to control the memory type (caching) of memory more precisely. if ( MSR::IsPATSupported() ) { MSR::InitializePAT(); for ( addr_t i = 0; i < PAT_NUM; i++ ) PAT2PMLFlags[i] = EncodePATAsPMLFlag(i); } // Otherwise, reroute all requests to the backwards compatible // scheme. TODO: Not all early 32-bit x86 CPUs supports these // values, so we need yet another fallback. else { PAT2PMLFlags[PAT_UC] = PML_WRTHROUGH | PML_NOCACHE; PAT2PMLFlags[PAT_WC] = PML_WRTHROUGH | PML_NOCACHE; // Approx. PAT2PMLFlags[2] = 0; // No such flag. PAT2PMLFlags[3] = 0; // No such flag. PAT2PMLFlags[PAT_WT] = PML_WRTHROUGH; PAT2PMLFlags[PAT_WP] = PML_WRTHROUGH; // Approx. PAT2PMLFlags[PAT_WB] = 0; PAT2PMLFlags[PAT_UCM] = PML_NOCACHE; } // Initialize CPU-specific things. InitCPU(); typedef const multiboot_memory_map_t* mmap_t; // Loop over every detected memory region. for ( mmap_t mmap = (mmap_t) (addr_t) bootinfo->mmap_addr; (addr_t) mmap < bootinfo->mmap_addr + bootinfo->mmap_length; mmap = (mmap_t) ((addr_t) mmap + mmap->size + sizeof(mmap->size)) ) { // Check that we can use this kind of RAM. if ( mmap->type != 1 ) continue; // The kernel's code may split this memory area into multiple pieces. addr_t base = (addr_t) mmap->addr; size_t length = Page::AlignDown(mmap->len); #if defined(__i386__) // Figure out if the memory area is addressable (are our pointers big enough?) if ( 0xFFFFFFFFULL < mmap->addr ) continue; if ( 0xFFFFFFFFULL < mmap->addr + mmap->len ) length = 0x100000000ULL - mmap->addr; #endif // Count the amount of usable RAM (even if reserved for kernel). Page::totalmem += length; // Give all the physical memory to the physical memory allocator // but make sure not to give it things we already use. addr_t regionstart = base; addr_t regionend = base + length; addr_t processed = regionstart; while ( processed < regionend ) { addr_t lowest = processed; addr_t highest = regionend; // Don't allocate the kernel. if ( lowest < kernelend ) { processed = kernelend; continue; } // Don't give any of our modules to the physical page // allocator, we'll need them. bool continuing = false; uint32_t* modules = (uint32_t*) (addr_t) bootinfo->mods_addr; for ( uint32_t i = 0; i < bootinfo->mods_count; i++ ) { size_t modsize = (size_t) (modules[2*i+1] - modules[2*i+0]); addr_t modstart = (addr_t) modules[2*i+0]; addr_t modend = modstart + modsize; if ( modstart <= processed && processed < modend ) { processed = modend; continuing = true; break; } if ( lowest <= modstart && modstart < highest ) highest = modstart; } if ( continuing ) continue; if ( highest <= lowest ) break; // Now that we have a continious area not used by anything, // let's forward it to the physical page allocator. lowest = Page::AlignUp(lowest); highest = Page::AlignUp(highest); size_t size = highest - lowest; Page::InitPushRegion(lowest, size); processed = highest; } } // If the physical allocator couldn't handle the vast amount of // physical pages, it may decide to drop some. This shouldn't happen // until the pebibyte era of RAM. if ( 0 < Page::pagesnotonstack ) Log::PrintF("%zu bytes of RAM aren't used due to technical " "restrictions.\n", Page::pagesnotonstack * 0x1000UL); Memory::Unmap(0x0); // Remove NULL. // Finish allocating the top level PMLs for the kernels use. AllocateKernelPMLs(); } void Statistics(size_t* amountused, size_t* totalmem) { size_t memfree = (Page::stackused - Page::stackreserved) << 12UL; size_t memused = Page::totalmem - memfree; if ( amountused ) *amountused = memused; if ( totalmem ) *totalmem = Page::totalmem; } // Prepare the non-forkable kernel PMLs such that forking the kernel // address space will always keep the kernel mapped. void AllocateKernelPMLs() { const addr_t flags = PML_PRESENT | PML_WRITABLE; PML* const pml = PMLS[TOPPMLLEVEL]; size_t start = ENTRIES / 2; size_t end = ENTRIES; for ( size_t i = start; i < end; i++ ) { if ( pml->entry[i] & PML_PRESENT ) continue; addr_t page = Page::Get(); if ( !page ) Panic("out of memory allocating boot PMLs"); pml->entry[i] = page | flags; // Invalidate the new PML and reset it to zeroes. addr_t pmladdr = (addr_t) (PMLS[TOPPMLLEVEL-1] + i); InvalidatePage(pmladdr); memset((void*) pmladdr, 0, sizeof(PML)); } } } // namespace Memory } // namespace Sortix namespace Sortix { namespace Page { void ExtendStack() { // This call will always succeed, if it didn't, then the stack // wouldn't be full, and thus this function won't be called. addr_t page = GetUnlocked(); // This call will also succeed, since there are plenty of physical // pages available and it might need some. addr_t virt = (addr_t) (STACK + stacklength); if ( !Memory::Map(page, virt, PROT_KREAD | PROT_KWRITE) ) Panic("Unable to extend page stack, which should have worked"); // TODO: This may not be needed during the boot process! //Memory::InvalidatePage((addr_t) (STACK + stacklength)); stacklength += 4096UL / sizeof(addr_t); } void InitPushRegion(addr_t position, size_t length) { // Align our entries on page boundaries. addr_t newposition = Page::AlignUp(position); length = Page::AlignDown((position + length) - newposition); position = newposition; while ( length ) { if ( unlikely(stackused == stacklength) ) { if ( stackused == MAXSTACKLENGTH ) { pagesnotonstack += length / 4096UL; return; } ExtendStack(); } addr_t* stackentry = &(STACK[stackused++]); *stackentry = position; length -= 4096UL; position += 4096UL; } } bool ReserveUnlocked(size_t* counter, size_t least, size_t ideal) { assert(least < ideal); size_t available = stackused - stackreserved; if ( least < available ) return errno = ENOMEM, false; if ( available < ideal ) ideal = available; stackreserved += ideal; *counter += ideal; return true; } bool Reserve(size_t* counter, size_t least, size_t ideal) { ScopedLock lock(&pagelock); return ReserveUnlocked(counter, least, ideal); } bool ReserveUnlocked(size_t* counter, size_t amount) { return ReserveUnlocked(counter, amount, amount); } bool Reserve(size_t* counter, size_t amount) { ScopedLock lock(&pagelock); return ReserveUnlocked(counter, amount); } addr_t GetReservedUnlocked(size_t* counter) { if ( !*counter ) return 0; assert(stackused); // After all, we did _reserve_ the memory. addr_t result = STACK[--stackused]; assert(result == AlignDown(result)); stackreserved--; (*counter)--; return result; } addr_t GetReserved(size_t* counter) { ScopedLock lock(&pagelock); return GetReservedUnlocked(counter); } addr_t GetUnlocked() { assert(stackreserved <= stackused); if ( unlikely(stackreserved == stackused) ) return errno = ENOMEM, 0; addr_t result = STACK[--stackused]; assert(result == AlignDown(result)); return result; } addr_t Get() { ScopedLock lock(&pagelock); return GetUnlocked(); } void PutUnlocked(addr_t page) { assert(page == AlignDown(page)); if ( unlikely(stackused == stacklength) ) { if ( stackused == MAXSTACKLENGTH ) { pagesnotonstack++; return; } ExtendStack(); } STACK[stackused++] = page; } void Put(addr_t page) { ScopedLock lock(&pagelock); PutUnlocked(page); } void Lock() { kthread_mutex_lock(&pagelock); } void Unlock() { kthread_mutex_unlock(&pagelock); } } // namespace Page } // namespace Sortix namespace Sortix { namespace Memory { addr_t ProtectionToPMLFlags(int prot) { addr_t result = 0; if ( prot & PROT_EXEC ) { result |= PML_USERSPACE; } if ( prot & PROT_READ ) { result |= PML_USERSPACE; } if ( prot & PROT_WRITE ) { result |= PML_USERSPACE | PML_WRITABLE; } if ( prot & PROT_KEXEC ) { result |= 0; } if ( prot & PROT_KREAD ) { result |= 0; } if ( prot & PROT_KWRITE ) { result |= 0; } if ( prot & PROT_FORK ) { result |= PML_FORK; } return result; } int PMLFlagsToProtection(addr_t flags) { int prot = PROT_KREAD | PROT_KWRITE | PROT_KEXEC; bool user = flags & PML_USERSPACE; bool write = flags & PML_WRITABLE; if ( user ) prot |= PROT_EXEC | PROT_READ; if ( user && write ) prot |= PROT_WRITE; return prot; } int ProvidedProtection(int prot) { addr_t flags = ProtectionToPMLFlags(prot); return PMLFlagsToProtection(flags); } bool LookUp(addr_t mapto, addr_t* physical, int* protection) { // Translate the virtual address into PML indexes. const size_t MASK = (1<> (12 + (i-1) * TRANSBITS) & MASK; int prot = PROT_USER | PROT_KERNEL | PROT_FORK; // For each PML level, make sure it exists. size_t offset = 0; for ( size_t i = TOPPMLLEVEL; i > 1; i-- ) { size_t childid = pmlchildid[i]; PML* pml = PMLS[i] + offset; addr_t entry = pml->entry[childid]; if ( !(entry & PML_PRESENT) ) return false; int entryflags = entry & PML_ADDRESS; int entryprot = PMLFlagsToProtection(entryflags); prot &= entryprot; // Find the index of the next PML in the fractal mapped memory. offset = offset * ENTRIES + childid; } addr_t entry = (PMLS[1] + offset)->entry[pmlchildid[1]]; if ( !(entry & PML_PRESENT) ) return false; int entryflags = entry & PML_ADDRESS; int entryprot = PMLFlagsToProtection(entryflags); prot &= entryprot; addr_t phys = entry & PML_ADDRESS; if ( physical ) *physical = phys; if ( protection ) *protection = prot; return true; } void InvalidatePage(addr_t /*addr*/) { // TODO: Actually just call the instruction. Flush(); } // Flushes the Translation Lookaside Buffer (TLB). void Flush() { asm volatile("mov %0, %%cr3":: "r"(currentdir)); } addr_t GetAddressSpace() { return currentdir; } addr_t SwitchAddressSpace(addr_t addrspace) { // Have fun debugging this. if ( currentdir != Page::AlignDown(currentdir) ) PanicF("The variable containing the current address space " "contains garbage all of sudden: it isn't page-aligned. " "It contains the value 0x%zx.", currentdir); // Don't switch if we are already there. if ( addrspace == currentdir ) return currentdir; if ( addrspace & 0xFFFUL ) PanicF("addrspace 0x%zx was not page-aligned!", addrspace); addr_t previous = currentdir; // Switch and flush the TLB. asm volatile("mov %0, %%cr3":: "r"(addrspace)); currentdir = addrspace; return previous; } bool MapRange(addr_t where, size_t bytes, int protection) { for ( addr_t page = where; page < where + bytes; page += 4096UL ) { addr_t physicalpage = Page::Get(); if ( physicalpage == 0 ) { while ( where < page ) { page -= 4096UL; physicalpage = Unmap(page); Page::Put(physicalpage); } return false; } Map(physicalpage, page, protection); } return true; } bool UnmapRange(addr_t where, size_t bytes) { for ( addr_t page = where; page < where + bytes; page += 4096UL ) { addr_t physicalpage = Unmap(page); Page::Put(physicalpage); } return true; } static bool MapInternal(addr_t physical, addr_t mapto, int prot, addr_t extraflags = 0) { addr_t flags = ProtectionToPMLFlags(prot) | PML_PRESENT; // Translate the virtual address into PML indexes. const size_t MASK = (1<> (12 + (i-1) * TRANSBITS) & MASK; // For each PML level, make sure it exists. size_t offset = 0; for ( size_t i = TOPPMLLEVEL; i > 1; i-- ) { size_t childid = pmlchildid[i]; PML* pml = PMLS[i] + offset; addr_t& entry = pml->entry[childid]; // Find the index of the next PML in the fractal mapped memory. size_t childoffset = offset * ENTRIES + childid; if ( !(entry & PML_PRESENT) ) { // TODO: Possible memory leak when page allocation fails. addr_t page = Page::Get(); if ( !page ) return false; addr_t pmlflags = PML_PRESENT | PML_WRITABLE | PML_USERSPACE | PML_FORK; entry = page | pmlflags; // Invalidate the new PML and reset it to zeroes. addr_t pmladdr = (addr_t) (PMLS[i-1] + childoffset); InvalidatePage(pmladdr); memset((void*) pmladdr, 0, sizeof(PML)); } offset = childoffset; } // Actually map the physical page to the virtual page. const addr_t entry = physical | flags | extraflags; (PMLS[1] + offset)->entry[pmlchildid[1]] = entry; return true; } bool Map(addr_t physical, addr_t mapto, int prot) { return MapInternal(physical, mapto, prot); } void PageProtect(addr_t mapto, int protection) { addr_t phys; if ( !LookUp(mapto, &phys, NULL) ) return; Map(phys, mapto, protection); } void PageProtectAdd(addr_t mapto, int protection) { addr_t phys; int prot; if ( !LookUp(mapto, &phys, &prot) ) return; prot |= protection; Map(phys, mapto, prot); } void PageProtectSub(addr_t mapto, int protection) { addr_t phys; int prot; if ( !LookUp(mapto, &phys, &prot) ) return; prot &= ~protection; Map(phys, mapto, prot); } addr_t Unmap(addr_t mapto) { // Translate the virtual address into PML indexes. const size_t MASK = (1<> (12 + (i-1) * TRANSBITS) & MASK; } // For each PML level, make sure it exists. size_t offset = 0; for ( size_t i = TOPPMLLEVEL; i > 1; i-- ) { size_t childid = pmlchildid[i]; PML* pml = PMLS[i] + offset; addr_t& entry = pml->entry[childid]; if ( !(entry & PML_PRESENT) ) PanicF("Attempted to unmap virtual page %p, but the virtual" " page was wasn't mapped. This is a bug in the code " "code calling this function", mapto); // Find the index of the next PML in the fractal mapped memory. offset = offset * ENTRIES + childid; } addr_t& entry = (PMLS[1] + offset)->entry[pmlchildid[1]]; addr_t result = entry & PML_ADDRESS; entry = 0; // TODO: If all the entries in PML[N] are not-present, then who // unmaps its entry from PML[N-1]? return result; } bool MapPAT(addr_t physical, addr_t mapto, int prot, addr_t mtype) { addr_t extraflags = PAT2PMLFlags[mtype]; return MapInternal(physical, mapto, prot, extraflags); } void ForkCleanup(size_t i, size_t level) { PML* destpml = FORKPML + level; if ( !i ) return; for ( size_t n = 0; n < i-1; n++ ) { addr_t entry = destpml->entry[i]; if ( !(entry & PML_FORK ) ) continue; addr_t phys = entry & PML_ADDRESS; if ( 1 < level ) { addr_t destaddr = (addr_t) (FORKPML + level-1); Map(phys, destaddr, PROT_KREAD | PROT_KWRITE); InvalidatePage(destaddr); ForkCleanup(ENTRIES+1UL, level-1); } Page::Put(phys); } } // TODO: Copying every frame is endlessly useless in many uses. It'd be // nice to upgrade this to a copy-on-write algorithm. bool Fork(size_t level, size_t pmloffset) { PML* destpml = FORKPML + level; for ( size_t i = 0; i < ENTRIES; i++ ) { addr_t entry = (PMLS[level] + pmloffset)->entry[i]; // Link the entry if it isn't supposed to be forked. if ( !(entry & PML_FORK ) ) { destpml->entry[i] = entry; continue; } addr_t phys = Page::Get(); if ( unlikely(!phys) ) { ForkCleanup(i, level); return false; } addr_t flags = entry & PML_FLAGS; destpml->entry[i] = phys | flags; // Map the destination page. addr_t destaddr = (addr_t) (FORKPML + level-1); Map(phys, destaddr, PROT_KREAD | PROT_KWRITE); InvalidatePage(destaddr); size_t offset = pmloffset * ENTRIES + i; if ( 1 < level ) { if ( !Fork(level-1, offset) ) { Page::Put(phys); ForkCleanup(i, level); return false; } continue; } // Determine the source page's address. const void* src = (const void*) (offset * 4096UL); // Determine the destination page's address. void* dest = (void*) (FORKPML + level - 1); memcpy(dest, src, 4096UL); } return true; } bool Fork(addr_t dir, size_t level, size_t pmloffset) { PML* destpml = FORKPML + level; // This call always succeeds. Map(dir, (addr_t) destpml, PROT_KREAD | PROT_KWRITE); InvalidatePage((addr_t) destpml); return Fork(level, pmloffset); } // Create an exact copy of the current address space. addr_t Fork() { addr_t dir = Page::Get(); if ( dir == 0 ) return 0; if ( !Fork(dir, TOPPMLLEVEL, 0) ) { Page::Put(dir); return 0; } // Now, the new top pml needs to have its fractal memory fixed. const addr_t flags = PML_PRESENT | PML_WRITABLE; addr_t mapto; addr_t childaddr; (FORKPML + TOPPMLLEVEL)->entry[ENTRIES-1] = dir | flags; childaddr = (FORKPML + TOPPMLLEVEL)->entry[ENTRIES-2] & PML_ADDRESS; for ( size_t i = TOPPMLLEVEL-1; i > 0; i-- ) { mapto = (addr_t) (FORKPML + i); Map(childaddr, mapto, PROT_KREAD | PROT_KWRITE); InvalidatePage(mapto); (FORKPML + i)->entry[ENTRIES-1] = dir | flags; childaddr = (FORKPML + i)->entry[ENTRIES-2] & PML_ADDRESS; } return dir; } } // namespace Memory } // namespace Sortix