sortix-mirror/kernel/scheduler.cpp

231 lines
5.9 KiB
C++

/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012, 2013, 2014.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
Sortix. If not, see <http://www.gnu.org/licenses/>.
scheduler.cpp
Decides the order to execute threads in and switching between them.
*******************************************************************************/
#include <sys/types.h>
#include <assert.h>
#include <msr.h>
#include <string.h>
#include <timespec.h>
#include <sortix/clock.h>
#include <sortix/timespec.h>
#include <sortix/kernel/decl.h>
#include <sortix/kernel/interrupt.h>
#include <sortix/kernel/kernel.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/process.h>
#include <sortix/kernel/scheduler.h>
#include <sortix/kernel/signal.h>
#include <sortix/kernel/syscall.h>
#include <sortix/kernel/thread.h>
#include <sortix/kernel/time.h>
#if defined(__i386__) || defined(__x86_64__)
#include "x86-family/gdt.h"
#include "x86-family/float.h"
#endif
namespace Sortix {
namespace Scheduler {
static Thread* current_thread;
static Thread* idle_thread;
static Thread* first_runnable_thread;
static Thread* first_sleeping_thread;
static Process* init_process;
static Thread* PopNextThread()
{
if ( first_runnable_thread )
{
Thread* result = first_runnable_thread;
first_runnable_thread = first_runnable_thread->scheduler_list_next;
return result;
}
return idle_thread;
}
static void DoActualSwitch(CPU::InterruptRegisters* regs)
{
Thread* prev = CurrentThread();
Thread* next = PopNextThread();
if ( prev == next )
return;
prev->SaveRegisters(regs);
next->LoadRegisters(regs);
Memory::SwitchAddressSpace(next->addrspace);
current_thread = next;
#if defined(__i386__) || defined(__x86_64__)
Float::NotityTaskSwitch();
GDT::SetKernelStack(next->kernelstackpos, next->kernelstacksize,
next->kernelstackpos + next->kernelstacksize);
#endif
#if defined(__i386__)
prev->fsbase = (unsigned long) GDT::GetFSBase();
prev->gsbase = (unsigned long) GDT::GetGSBase();
GDT::SetFSBase((uint32_t) next->fsbase);
GDT::SetGSBase((uint32_t) next->gsbase);
#elif defined(__x86_64__)
prev->fsbase = (unsigned long) rdmsr(MSRID_FSBASE);
prev->gsbase = (unsigned long) rdmsr(MSRID_GSBASE);
wrmsr(MSRID_FSBASE, (uint64_t) next->fsbase);
wrmsr(MSRID_GSBASE, (uint64_t) next->gsbase);
#endif
}
void Switch(CPU::InterruptRegisters* regs)
{
DoActualSwitch(regs);
if ( regs->signal_pending && regs->InUserspace() )
{
Interrupt::Enable();
Signal::DispatchHandler(regs, NULL);
}
}
void InterruptYieldCPU(CPU::InterruptRegisters* regs, void* /*user*/)
{
Switch(regs);
}
void ThreadExitCPU(CPU::InterruptRegisters* regs, void* /*user*/)
{
#if defined(__i386__) || defined(__x86_64__)
// Can't use floating point instructions from now.
Float::NofityTaskExit(current_thread);
#endif
SetThreadState(current_thread, ThreadState::DEAD);
InterruptYieldCPU(regs, NULL);
}
// The idle thread serves no purpose except being an infinite loop that does
// nothing, which is only run when the system has nothing to do.
void SetIdleThread(Thread* thread)
{
assert(!idle_thread);
idle_thread = thread;
SetThreadState(thread, ThreadState::NONE);
current_thread = thread;
}
void SetInitProcess(Process* init)
{
init_process = init;
}
Process* GetInitProcess()
{
return init_process;
}
Process* GetKernelProcess()
{
return idle_thread->process;
}
void SetThreadState(Thread* thread, ThreadState state)
{
bool wasenabled = Interrupt::SetEnabled(false);
// Remove the thread from the list of runnable threads.
if ( thread->state == ThreadState::RUNNABLE &&
state != ThreadState::RUNNABLE )
{
if ( thread == first_runnable_thread )
first_runnable_thread = thread->scheduler_list_next;
if ( thread == first_runnable_thread )
first_runnable_thread = NULL;
assert(thread->scheduler_list_prev);
assert(thread->scheduler_list_next);
thread->scheduler_list_prev->scheduler_list_next = thread->scheduler_list_next;
thread->scheduler_list_next->scheduler_list_prev = thread->scheduler_list_prev;
thread->scheduler_list_prev = NULL;
thread->scheduler_list_next = NULL;
}
// Insert the thread into the scheduler's carousel linked list.
if ( thread->state != ThreadState::RUNNABLE &&
state == ThreadState::RUNNABLE )
{
if ( first_runnable_thread == NULL )
first_runnable_thread = thread;
thread->scheduler_list_prev = first_runnable_thread->scheduler_list_prev;
thread->scheduler_list_next = first_runnable_thread;
first_runnable_thread->scheduler_list_prev = thread;
thread->scheduler_list_prev->scheduler_list_next = thread;
}
thread->state = state;
assert(thread->state != ThreadState::RUNNABLE || thread->scheduler_list_prev);
assert(thread->state != ThreadState::RUNNABLE || thread->scheduler_list_next);
Interrupt::SetEnabled(wasenabled);
}
ThreadState GetThreadState(Thread* thread)
{
return thread->state;
}
static int sys_sched_yield(void)
{
return kthread_yield(), 0;
}
void Init()
{
first_runnable_thread = NULL;
first_sleeping_thread = NULL;
idle_thread = NULL;
Syscall::Register(SYSCALL_SCHED_YIELD, (void*) sys_sched_yield);
}
} // namespace Scheduler
} // namespace Sortix
namespace Sortix {
Thread* CurrentThread()
{
return Scheduler::current_thread;
}
Process* CurrentProcess()
{
return CurrentThread()->process;
}
} // namespace Sortix