sortix-mirror/sortix/scheduler.cpp
Jonas 'Sortie' Termansen 0515111314 The initial ramdisk is now mapped onto a special location.
This fixes issues where it did not fit into the first few MiB,
or that GRUB loaded it someplace weird.

The kernel heap is now also protected against growing into the
ramdisk and the kernel stack.
2011-12-22 14:13:18 +01:00

366 lines
9.6 KiB
C++

/******************************************************************************
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along
with Sortix. If not, see <http://www.gnu.org/licenses/>.
scheduler.cpp
Handles context switching between tasks and deciding when to execute what.
******************************************************************************/
#include "platform.h"
#include "panic.h"
#include "thread.h"
#include "process.h"
#include "time.h"
#include "scheduler.h"
#include "memorymanagement.h"
#include "syscall.h"
#include "sound.h" // HACK FOR SIGINT
#include "descriptor_tables.h"
namespace Sortix
{
void SysExit(int status); // HACK FOR SIGINT
// Internal forward-declarations.
namespace Scheduler
{
Thread* PopNextThread();
void WakeSleeping();
void LogBeginContextSwitch(Thread* current, const CPU::InterruptRegisters* state);
void LogContextSwitch(Thread* current, Thread* next);
void LogEndContextSwitch(Thread* current, const CPU::InterruptRegisters* state);
void SysSleep(size_t secs);
void SysUSleep(size_t usecs);
void HandleSigIntHack(CPU::InterruptRegisters* regs);
}
namespace Scheduler
{
byte dummythreaddata[sizeof(Thread)];
Thread* dummythread = (Thread*) &dummythreaddata;
Thread* currentthread;
Thread* idlethread;
Thread* firstrunnablethread;
Thread* firstsleepingthread;
Process* initprocess;
bool hacksigintpending = false;
void Init()
{
// We use a dummy so that the first context switch won't crash when
// currentthread is accessed. This lets us avoid checking whether
// currentthread is NULL (which it only will be once) which gives
// simpler code.
currentthread = dummythread;
firstrunnablethread = NULL;
firstsleepingthread = NULL;
idlethread = NULL;
hacksigintpending = false;
Syscall::Register(SYSCALL_SLEEP, (void*) SysSleep);
Syscall::Register(SYSCALL_USLEEP, (void*) SysUSleep);
addr_t stackstart = Memory::GetKernelStack();
size_t stacksize = Memory::GetKernelStackSize();
addr_t stackend = stackstart - stacksize;
if ( !Memory::MapRangeKernel(stackend, stacksize) )
{
PanicF("could not create kernel stack (%zx to %zx)",
stackend, stackstart);
}
GDT::SetKernelStack((size_t*) stackstart);
}
// The no operating thread is a thread stuck in an infinite loop that
// executes absolutely nothing, which is only run when the system has
// nothing to do.
void SetIdleThread(Thread* thread)
{
ASSERT(idlethread == NULL);
idlethread = thread;
SetThreadState(thread, Thread::State::NONE);
}
void SetDummyThreadOwner(Process* process)
{
dummythread->process = process;
}
void SetInitProcess(Process* init)
{
initprocess = init;
}
Process* GetInitProcess()
{
return initprocess;
}
void MainLoop()
{
// Wait for the first hardware interrupt to trigger a context switch
// into the first task! Then the init process should gracefully
// start executing.
while(true);
}
void Switch(CPU::InterruptRegisters* regs)
{
LogBeginContextSwitch(currentthread, regs);
if ( hacksigintpending ) { HandleSigIntHack(regs); }
WakeSleeping();
Thread* nextthread = PopNextThread();
if ( !nextthread ) { Panic("had no thread to switch to"); }
LogContextSwitch(currentthread, nextthread);
if ( nextthread == currentthread ) { return; }
currentthread->SaveRegisters(regs);
nextthread->LoadRegisters(regs);
addr_t newaddrspace = nextthread->process->addrspace;
Memory::SwitchAddressSpace(newaddrspace);
currentthread = nextthread;
nextthread->HandleSignal(regs);
LogEndContextSwitch(currentthread, regs);
if ( currentthread->scfunc ) { Syscall::Resume(regs); }
}
void ProcessTerminated(CPU::InterruptRegisters* regs)
{
currentthread = dummythread;
Switch(regs);
}
const bool DEBUG_BEGINCTXSWITCH = false;
const bool DEBUG_CTXSWITCH = false;
const bool DEBUG_ENDCTXSWITCH = false;
void LogBeginContextSwitch(Thread* current, const CPU::InterruptRegisters* state)
{
if ( DEBUG_BEGINCTXSWITCH && current->process->pid != 0 )
{
Log::PrintF("Switching from 0x%p", current);
state->LogRegisters();
Log::Print("\n");
}
}
void LogContextSwitch(Thread* current, Thread* next)
{
if ( DEBUG_CTXSWITCH && current != next )
{
Log::PrintF("switching from %u:%u (0x%p) to %u:%u (0x%p) \n",
current->process->pid, 0, current,
next->process->pid, 0, next);
}
}
void LogEndContextSwitch(Thread* current, const CPU::InterruptRegisters* state)
{
if ( DEBUG_ENDCTXSWITCH && current->process->pid != 0 )
{
Log::PrintF("Switched to 0x%p", current);
state->LogRegisters();
Log::Print("\n");
}
}
Thread* PopNextThread()
{
if ( !firstrunnablethread ) { return idlethread; }
Thread* result = firstrunnablethread;
firstrunnablethread = firstrunnablethread->schedulerlistnext;
return result;
}
void SetThreadState(Thread* thread, Thread::State state)
{
if ( thread->state == state ) { return; }
if ( thread->state == Thread::State::RUNNABLE )
{
if ( thread == firstrunnablethread ) { firstrunnablethread = thread->schedulerlistnext; }
if ( thread == firstrunnablethread ) { firstrunnablethread = NULL; }
thread->schedulerlistprev->schedulerlistnext = thread->schedulerlistnext;
thread->schedulerlistnext->schedulerlistprev = thread->schedulerlistprev;
thread->schedulerlistprev = NULL;
thread->schedulerlistnext = NULL;
}
// Insert the thread into the scheduler's carousel linked list.
if ( state == Thread::State::RUNNABLE )
{
if ( firstrunnablethread == NULL ) { firstrunnablethread = thread; }
thread->schedulerlistprev = firstrunnablethread->schedulerlistprev;
thread->schedulerlistnext = firstrunnablethread;
firstrunnablethread->schedulerlistprev = thread;
thread->schedulerlistprev->schedulerlistnext = thread;
}
thread->state = state;
}
Thread::State GetThreadState(Thread* thread)
{
return thread->state;
}
void PutThreadToSleep(Thread* thread, uintmax_t usecs)
{
SetThreadState(thread, Thread::State::BLOCKING);
thread->sleepuntil = Time::MicrosecondsSinceBoot() + usecs;
// We use a simple linked linked list sorted after wake-up time to
// keep track of the threads that are sleeping.
if ( firstsleepingthread == NULL )
{
thread->nextsleepingthread = NULL;
firstsleepingthread = thread;
return;
}
if ( thread->sleepuntil < firstsleepingthread->sleepuntil )
{
thread->nextsleepingthread = firstsleepingthread;
firstsleepingthread = thread;
return;
}
for ( Thread* tmp = firstsleepingthread; tmp != NULL; tmp = tmp->nextsleepingthread )
{
if ( tmp->nextsleepingthread == NULL ||
thread->sleepuntil < tmp->nextsleepingthread->sleepuntil )
{
thread->nextsleepingthread = tmp->nextsleepingthread;
tmp->nextsleepingthread = thread;
return;
}
}
}
void EarlyWakeUp(Thread* thread)
{
uintmax_t now = Time::MicrosecondsSinceBoot();
if ( thread->sleepuntil < now ) { return; }
thread->sleepuntil = now;
SetThreadState(thread, Thread::State::RUNNABLE);
if ( firstsleepingthread == thread )
{
firstsleepingthread = thread->nextsleepingthread;
thread->nextsleepingthread = NULL;
return;
}
for ( Thread* tmp = firstsleepingthread; tmp->nextsleepingthread != NULL; tmp = tmp->nextsleepingthread )
{
if ( tmp->nextsleepingthread == thread )
{
tmp->nextsleepingthread = thread->nextsleepingthread;
thread->nextsleepingthread = NULL;
return;
}
}
}
void WakeSleeping()
{
uintmax_t now = Time::MicrosecondsSinceBoot();
while ( firstsleepingthread && firstsleepingthread->sleepuntil < now )
{
SetThreadState(firstsleepingthread, Thread::State::RUNNABLE);
Thread* next = firstsleepingthread->nextsleepingthread;
firstsleepingthread->nextsleepingthread = NULL;
firstsleepingthread = next;
}
}
void HandleSigIntHack(CPU::InterruptRegisters* regs)
{
if ( currentthread == idlethread ) { return; }
hacksigintpending = false;
// HACK: Don't crash init or sh.
Process* process = CurrentProcess();
if ( process->pid < 3 ) { return; }
Sound::Mute();
Log::PrintF("^C\n");
process->Exit(130);
currentthread = dummythread;
}
void SigIntHack()
{
hacksigintpending = true;
}
void SysSleep(size_t secs)
{
Thread* thread = currentthread;
uintmax_t timetosleep = ((uintmax_t) secs) * 1000ULL * 1000ULL;
if ( timetosleep == 0 )
{
Switch(Syscall::InterruptRegs());
Syscall::AsIs();
return;
}
PutThreadToSleep(thread, timetosleep);
Syscall::Incomplete();
}
void SysUSleep(size_t usecs)
{
Thread* thread = currentthread;
uintmax_t timetosleep = usecs;
if ( timetosleep == 0 )
{
Switch(Syscall::InterruptRegs());
Syscall::AsIs();
return;
}
PutThreadToSleep(thread, timetosleep);
Syscall::Incomplete();
}
}
Thread* CurrentThread()
{
return Scheduler::currentthread;
}
Process* CurrentProcess()
{
return Scheduler::currentthread->process;
}
}