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Morse Theory studies the topology of smooth manifolds by looking at generic smooth
maps (Morse functions) from smooth manifolds to the reals (or, sometimes, to the cir-
cle), and investigating the critical points of such maps and their indices, interactions, the
gradient flow lines for the maps, etc. Cerf Theory studies smooth 1-parameter families
of functions connecting different Morse functions on the same smooth manifold. Al-
though there are important infinite-dimensional versions of these theories, | will focus on
the finite-dimensional setting and, especially, on low dimensions like 2, 3, 4 and 5. | will
focus less on the foundational analytic technicalities and more on the applications. Some
of the most important results | want to get to are (not necessarily in this order, and not
necessarily in full detail):

The classification of surfaces.

The existence of Heegaard splittings of 3-manifolds.

Generators and relations for the mapping class groups of surfaces.

Handlebody decompositions for 4-manifolds and surgery diagrams for 3-manifolds.
The Kirby calculus for 3-manifolds and 4-manifolds.

The isotopy versus pseudo-isotopy problem as studied by Cerf and Hatcher-Wagoner.

No bk -

Understanding Morse 2-functions (generic maps to 2-manifolds).

We begin with a problem: Consider the embedding of S2 in R3 shown at left. This is sup-
posed to be rotationally symmetric about the red z-axis. Let X de-
note this particular submanifold of R? (diffeomorphic to S?). Now let
f: X — R be orthogonal projection onto the z-axis. Note that f has
two critical points, indicated, a maximum and a minimum. Now note
that, for any unit vector v € §%, we can project ¥ orthogonally onto
the oriented line spanned by v to get another function f,:% — R.
Thus our original f is fo1), and —f is f,-1). (We are assuming
the origin is in the middle of the picture at left.) For another exam-
ple, f1,0,0) will have six critical points: two maxima, two minima and

two saddles, as in the figure below:
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Thus we have a 2-parameter family of functions f,, parameterized by the 2-dimensional
parameter space S2. The problem is to somehow depict with a diagram the behavior of
the critical values of f, and their indices as v ranges over S?. (The index of a minimum is
0, the index of a saddle is 1, the index of a maximum is 2, more on indices later.)

(Recall: for a smooth f: X —Y, a point pe X is a critical point if Df, : T,X — Ty)Y
does not have maximal rank. If p € X is a critical point, then f(p) € Y is a critical value.
When Y is 1-dimensional, not having maximal rank simply means being equal to 0.)

One possible way to depict this is to draw a diagram in $? x R, where in each v x R you
draw the critical values of f,, labelled with their indices. Since the critical values are usu-
ally isolated, you should have some kind of surface in S? x R, possibly with some inter-
esting singularities. A convenient picture for $? x R is an open shell between two concen-
tric spheres (identifying R with an open interval).

This picture drawn in §2 x R can also be thought of as the set of critical values of the
function F: §2 x ¥ — 82 x R given by (v,p) — (v, fuo(p)).

We are just about to define a Morse function properly, given the above preamble, but
first we mention one famous problem that was studied using Morse and Cerf theory:

An jsotopy between two maps fo,fi: X —Y can be define as a diffeomorphism
F:]0,1] x X — [0,1] x Y such that F(0,p) = (0, fo(p)), F(1,p) = (1, fi(p)) and F is “level-
preserving’, i.e. F is the identity on the [0,1] component, or F(t,p) = (¢, fi(p)). A pseudo-
isotopy between fo and fi is a diffeomorphism F:[0,1] x X — [0,1] x Y satisfying the
first two criteria but not necessarily level-preserving. Note than when gluing manifolds to-
gether along boundaries, the resulting manifold is determined up to diffeomorphism by
the pseudo-isotopy class of the gluing map (this is a good exercise to prove), but in other
contexts the difference between isotopy and pseudo-isotopy is very important. Cerf stud-



ied 1-parameter families of functions connecting Morse functions in order to understand
this problem, and hopefully we'll get to that later.

Now:

Preliminary definition: A Morse function is a smooth map f from an n-manifold X to a
1-manifold Y such that, for every critical point p € X, there exist local coordinates
(z1,...,2,) about p and a coordinate y about f(p) with respect to which
flxy, .. xn) = -2 —...—ax}+ 2} , +...22. The integer k is called the index of p.

We need to see that Morse functions exist, that the index is independent of the coordi-
nates, that there are lots of Morse functions, that the property of being Morse is stable
(doesn’t change under small perturbations), and many other foundational facts. But first
some examples:

When n =2, we have minima f(z,25)=2?+22 with index k=0, saddles

f(z1,z2) = —22 + x2 with index k = 1 and maxima f(z1,zs) = —2? — 22 with index k = 2.
When n =1 we have minima f(z) =z with index k=0 and maxima f(z) = —z* with
index k= 1.

Note that f(z) ==z is not Morse, and that there is an interesting perturbation
fi(z) = x3 +tx. When t < 0, f; is Morse with one min and one max, and when t > 0, f; is
Morse with no critical points. We'll discuss these phenomena more carefully soon, and
they do arise in the problem that we began with.
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(YouTube link)


https://youtube.com/watch?v=yun73TgUDyg
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Addendum to the problem from last time:

In the exercise from last time, since the embedded sphere ¥ is rotationally symmetric
about the z-axis, the critical values of f,, as a function of v € 82, will be invariant under
rotation of v € S? about the z-axis, and thus really we might as well think of the parame-
ter v as in S, or even just in an interval from north pole to south pole in S2.

So do the problem as stated, but note that your answer is rotation-invariant. Then do it
again but this time using the surface ¥ at right:

Continuation of lecture:

Last lecture's definition of a Morse function was called prelimi-
nary because it did not discuss boundary behavior and com-
pactness. Here is the full definition:

Definition: A function f: X" — Y! is Morse if the following
conditions are satisfied:

1. For each critical point p € X there are coordinates around p and f(p) with respect to
which f(z1,...,zn) = —2i — ... —z} + 2}, +... 22
2. X is compact.

3. f1(8Y) = 8X

(In class | said that either X is closed and Y is anything or X is a cobordism (see draw-
ing) from M, to M; and Y =[0,1] with
f10) = My and f~1(1) = M;. The way I've said it
above is only slightly more general, and the cobor-
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dism case is generally the most important case to
consider.)

(To say that X is a cobordism from M, to M;
means that X is compact and 80X = MyII M;. To
say that X is closed means that X is compact with X = 0.)

Here are two important results about Morse functions, the proofs of which we will defer
till later in the interest of getting quickly to the topological applications:



Theorem: For any compact X there exists a Morse function on X. More precisely, for
any compact n-manifold X and any 1-manifold Y, and given any function f:8X — 9Y,
there exists an extension of f to a Morse function f: X — Y. (And furthermore, Morse
function are generic, i.e. there are lots of them, and any given function can be perturbed
in an arbitrarily small way to be Morse, more on this later.)

Thus we have Morse functions when we need them.

Theorem: If p € R" is a critical point of f:R" — R such that the Hession Hf(p) (the
n x n matrix of second order partial derivatives) is non-degenerate as a bilinear form,

then f is locally Morse at p, i.e. there are coordinate around p and f(p) with respect to
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which = —x%—...—xi+xi+1+...xn. Furthermore, the index k of p is precisely the

index of Hf(p) as a bilinear form, the number of negative diagonal entries of Hf(p) after
diagonalizing.

Thus the index of a Morse critical point is independent of the coordinate system.
Topology from Morse functions

Our first example of recovering topological information from a Morse function is the case
of a Morse function with no critical points.

Theorem: If X is a cobordism from M, to M; with a Morse function f: X — [0,1], if f
has no critical points then X is diffeomorphic to [0,1] x M.

Proof: We will construct a vector field V on X such that df(V) =1 (which is the same

thing as saying that Df(V) = 8/8y, where I'm using d for the exterial differential and D
for the derivative). Using this we will flow forward along V from M, to construct the dif-

feomorphism.

To get V we need a Riemannian metric (there are other more direct ways using a parti-
tion of unity to directly patch together such V's on coordinate charts, but using a Rie-
mannian metric has some advantages and is at the very least an important idea). A Rie-
mannian metric g on X is a choice of an inner product g, on T,X for each p € X, varying



smoothly in p. (Varying smoothly in p just means that, when g is written as an n x n ma-
trix in local coordinates, the entries of the matrix are all smooth functions of p.) Next
time we will use a partition of unity to show that Riemannian metrics exist and then

show how to use such a metric to get V.
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Further addendum to homework problem: As a warmup, do Y
the following one-lower-dimensional version: Let ¥ be the em-
bedding of S' in R? shown at right and now, for each v € S*,
define the analogous £, : S' — R. Then draw a graph in §* x R

of the critical values and their indices as a function of v. Now
the indices will only be 0 and 1. The critical events to note are

births and deaths of pairs of critical points and crossings of
critical values (one critical value rising above or below another
one).

Now continuing our proof: We need a Riemannian metric on X, so here is the quick
proof that Riemannian metrics exist. Cover X with coordinate charts {U;} with a corre-
sponding partition of unity {u;}. In each coordinate chart choose the standard Euclidean
inner product g;. Then let g = > w;gi;. This works because convex combinations of posi-
tive definite symmetric matrices are positive definite symmetric matrices.

Now note that a metric g, at each point p, is a non-degenerate bilinear form
gp: T,X xT,X - R and can thus equivalently be thought of as an isomorphism
gp: Ty X - T,X. Then using this isomorpism, we construct a vector field W by
W, = g, (dfy). Because f has no critical points, W is nowhere 0. This is the gradient vec-
tor field for f with respect to the metric g, denoted V,f. As a basic exercise you should
verify that, when g is the standard inner product on R" and f:R"™ — R, then V,f is the
usual gradient V.

Now because W is never 0, df(W) = g(W,W) is never 0, so we can let V = (1/df(W))W,
so that df(V)=1. This is the vector field we wanted. Now we construct a diffeomor-
phism ¢ : [0,1] x My — X by making ¢(t,p) equal to the point g you get to by starting at
p € My and flowing forward along V for time t. The fact that df(V) =1 means that
f(q) =t, and from this and the existence and uniqueness of solutions to ordinary differen-
tial equations shows that ¢ is a diffeomorphism. O

So now what if there are critical points?

Suppose that X is a cobordism from M, to M; with a Morse function f: X — [0,1] with
one single critical point p € X of index k, as in the picture at right. We will again use a
gradient vector field W = V,f to understand the topology of X in terms of the topology
of Wy but now, because df, =0, we cannot rescale W to get a vector field V with
df(V) =1 on all of X. So instead we will divide X into four parts, on three of which we



will rescale W. But before |
we do this we need to con-
struct our metric g a little

L0p) ¢
more carefully: We want 4((;,3+
there to be a coordinate e —2

chart U around p with re-
spect to which g is the
standard Euclidean inner
product and f is the standard Morse local model 3 +2?, so that W = > 4+2%,8,,. This is
possible because we can start with a standard Morse chart around p as one of the charts
in our partition of unity construction and then arrange that, in a ball neighborhood

around p, one of the y;'s is identically 1 and all the others are 0.

So now, assuming that g, f and W are standard in- (R e)
side a neighborhood U of p, we draw a picture of — 5" (RY
U with the level sets of f and the flow lines of V to
the right. We choose an € > 0 so that f~!(f(p) — )
and f71(f(p) +¢€) intersect U as shown. Then our
four pieces of X, which we will study more care-

fully next time, are:

1. f7'[0, f(p) — €], which is diffeomorphic to
[0, f(p) — € x My using flow along
(1/df(W))W.

2. f Y[f(p) + ¢ 1], which is diffeomorphic to [f(p)+e€,1] x M; using backward flow
along (1/df(W))W.

3. The intersection of f~1[f(p) —¢, f(p) + ¢ with the closure of the union of all flow
lines for W which start in some tubular neighborhood of z?+...+z7 in
f(f(p) — €). This is the “mystery piece” that we will understand better soon.

4. The rest of f7![f(p) — ¢, f(p) + €], which is a product that we will also discuss next
time.

(YouTube link)



https://youtube.com/watch?v=88dwfZLGlJE
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Exercise: Let us say that a Riemannian metric g is adapted to a Morse function f if, for
each critical point p of f, there exist coordinates around p with respect to which
f=>+z? and g is the standard inner product. Show that the space of metrics adapted
to a fixed Morse function is connected. l.e. if go and g1 are adapted to f then they are
connected by a smooth family ¢:, adapted to f for each t. It might be helpful to show
that any two coordinate charts near p, with the same orientation, for which f is standard
can be connected by a smooth path of such coordinate charts. (Thanks to Bruce Bartlett
and Eric Burgess for pointing out the importance of the orientation here, since O(n) is
disconnected.) It is also helpful to show that the space of inner products on R" is con-
nected.

Now back to the main thread: We are thinking about the situation where X is a
cobordism from M, to M; |

with a Morse function
f:X —0,1] with a single

critical point p of index k, 4—‘((;3+
and we want to understand H(p—2

what this says about the

topology of X. Refer again
to the figure at right.
Where we are going is: we want to describe X as built as a product on M, at the bot-
tom, with some kind of “handle” attached going over the critical point p, followed by an-
other product on M; at the top.

For our first approach to making this precise, we break X into four pieces: 710, f(p) — €
. f7Uf(p) +€1] (both of which are X
products) and two pieces making up

ff(p) — ¢ f(p) +€. The small e >0 9
is chosen so that there is a coordinate — 1

P ‘)C"\
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chart U around p making f standard,
with coordinates (z1,...,zy), such that

the closed ball Y~ z? < € is contained in
U. Then, for some € > €, we can take
our coordinate chart U to be the open
ball Y22 <€, and U and f look like
the figure at right. Note that
fYUfp) —e)N{zki1 = ... =z, = 0} is a sphere S¥ 1. Pick some small § > 0 so that the




5-neighborhood S*~1 x B"* of this ¥ in f~1(f(p) — €) is contained in U, and then let
A be the closure of the union of the flow lines for V,f which pass through this
Sk=1 x Bk intersected with f~1[f(p) — ¢, f(p) + €|. This is the region shaded in blue. We
want to think of A as a cobordism from S*¥!x B** to BF x S" %1 where the
BF x gn—k-1 is  ANf(f(p)+e),  which is a  d-neighborhood of
fUfp)+e)n{zy =... =z, =0} in f1(f(p) +e¢€). In the preceding figure of the whole
cobordism X, the region A is also outlined in blue.

Seeing A as a cobordism between manifolds with boundary means enlarging the definition
of a cobordism to include manifolds with boundary and corners, with the corners separat-
ing “vertical” boundary (which is a product) and “horizontal” boundary (the top and the
bottom). If we allow this, and the definitions are natural, then the complement of A
ff(p) — ¢, f(p) + ¢ is also a cobordism, but this time a product. Thus we can charac-
terize X as follows: X is built from M, by first constructing a product [0,1] x M, (we re-
place [0, f(p) — €] with [0,1] for simplicity). Then we attach A to {1} x M, via an embed-
ding of S¥! x B"* into {1} x My. At this point we do not have a smooth manifold but
we make it smooth by also attaching a product cobordism to the complement of this em-
bedding, and gluing the sides of the product cobordism to the sides of A. Finally we com-
plete with another product cobordism [0,1] x M;, but since this doesn’'t “do anything” we
can just ignore that step.

Next time | hope to say this a little more carefully, so I'll leave out the rest of my waffle
from this lecture and clarify in my next post. Here's the video (thanks to Eddie Beck):

(YouTube link)


https://youtube.com/watch?v=yfnD_ByV4Ek
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| belabored some subtleties about handles last time and will continue to do so a little bit
more here. The upshot of the story should be that, when X is an n-dimensional cobor-
dism from M, to M; with a Morse function f: M — [0,1] with a single critical point of
index k, then X is diffeomorphic to [0,1] x My with an n-dimensional k-handle attached
to {1} x My. Here are 3 different approaches to defining a handle and what it means to
attach a handle, and hence making sense of the preceding sentence:

1. The most standard thing is to say that an n-dimensional k-handle is
H = H! = B* x B"*. This is glued to the top M of a cobordism X via an embed-
ding ¢ : S¥1 x B % < M. The boundary of H is divided into two parts: the attach-
ing region (0B*) x Bv 'k = gk-1 x pnk and the free region
BF x 9B" % = BX x 8" %~1_Note first that H is not a smooth manifold, but a mani-
fold with corners, and that, after attaching such a handle, we get a manifold with
corners, which need to be smoothed. All this is illustrated in the figure below. There
are subtleties one could discuss about what it means precisely to smooth corners and
about the fact that any reasonable way of smoothing the corners produces the same

smooth manifold. Some of these details are dealt with in Kosinski, Differential Mani-
folds.

2. The second approach is the approach discussed first in the preceding lecture, in
which the handle is itself a cobordism, but a cobordism with corners between mani-
folds with boundary. More precisely, H = H}! is a subset of R" defined as follows: Let
f=-ai—...—zi+ai +...+a2 Let O_H=f'(-1)Nn{z},  +...22 <1}. Then
let H be the closure of the intersection of f~1[—1,1] with the union of all flow lines
for Vf starting on 0_H. Note that 0_H =~ S¥1 x B»* and that H is a cobordism
from 0_H to 0,H = f1(1)N{a? +...+ 22 <1} = B* x S» %1, Furthermore, H has
“product sides” §yH = [0,1] x S¥1 x §7»~*=1 the part of H consisting of flow lines
starting at d(partial_H). In this case, what it means to attach H is to choose an



embedding ¢ : S*7! x B¥ — M, glue H using this attaching map, and then attach a
product [0,1] x (M ~ #(S* ! x B*)), glueing the sides of this product to the sides of
H, resulting  in a smooth manifold. This is illustrated below.
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3. The third approach is to describe the handle as something that immediately pro-
duces a smooth manifold after being attached; in this case it should have “flanges”
instead of corners. Milnor, in his Morse Theory, does this by comparing the Morse
function f and a small perturbation of f supported in a neighborhood of the critical
point. Here is another way: H; is a subset of R" described as follows: Let
f:R" - R and 0_H be as in the preceding construction. Now let 7:9_H — (0, o0]
be the time it takes to flow from a point on _H C f~'(—1) to f}(1). Thus 7 = 00
along S* 1 x {0} c S¥!' x B"*=9_H. Choose a bump function p:B"* —]0,1]
and consider the function ur: 8* 1 x B * =9_H — (0,00]. Then let H be the clo-
sure of the union of flow lines for V£ starting at 8_H and flowing forward for time
ut. This is illustrated below and, once again, is attached via an embedding of
Sk=1 % B"*. The resulting manifold is immediately smooth and the new boundary is
obtained from the old boundary by “replacing” the image of the embedding of
Sk=1 » B"* with the other part of the boundary of H, which is diffeomorphic to
BF x gn—k-1

::Ck-[-\)* ")Th

Henceforth we will use the simplest B¥ x B"* model, but | wanted to discuss these sub-
tleties because, in some contexts, in can become important. For example, if one wants to
build manifolds with certain additional structures (symplectic or metric structures, for ex-



ample), one would like to be very careful about extending such structures across handles,
and then one may need to be quite careful with the rounded corners.

In the rest of the lecture | went through examples of handles in dimensions one and two,
and discussed the cases k=0 and k= n. I'll save that writeup for the next blog post.
Here is the video:

(YouTube link)



https://youtube.com/watch?v=zaeSiopUWFg
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Here we focus on examples of handles. Recall that an n-dimensional k-handle is
H = H = B* x B"* with 0H divided into two regions, the attaching region S*=! x B**
and the free region B¥ x S" %71 and a handle is attached to a pre-existing cobordism X
from My to M; via an embedding of the attaching region into M, producing a new
cobordsim X’ from My to Mj, containing X. Note that we have not yet discussed care-
fully how M is obtained from Mj, but when we do discuss this, the general method will
be known as surgery.

First we note that all of this even makes sense when k = 0 or k = n, with the convention
that B is a point and S~ = (. For ex-
ample, S' is built with a 0-handle LML[C : % B s

BY x B!, attached along an embedding
of (0, i.e. not attached to anything, fol-
lowing by a 1-handle B! x B® attached %\A) le — B 2R - %
along an embedding of S° x B, as in

the figure to the right. This picture ob-
viously generalizes to S™ built with a 0-handles and a n-handle.

Our main results thus far concern Morse functions with zero or one critical points, but
these immediately imply the following general result:

Corollary: Every cobordism decomposes into a sequence of products and handles. In par-
ticular, every closed m-manifold can be built starting with a 0-handle, then attaching
some number of other handles of index 0 < k < n, and then capping off with a n-handle.

(In fact we can always arrange that, if the manifold is connected, we only need one 0-
handle and one n-handle, but this fact is not entirely trivial and we will try to prove it
carefully later.)

So here is a sequence of examples:

Dimension 1: S!' again, but with more handles; notice the different possible ways you
might cancel pairs of 0- and 1-handles:
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Dimension 2: Here is a standard picture of a torus decomposed into a 0-handle, two 1-
handles and a 2-handle, with products in between. In terms of this decomposition into
elementary cobordisms, the second 1-handle is attached to the top of the product above
the first 1-handle. However, we can let the attaching map for the second 1-handle flow
down along the gradient vector field through the product and past the first 1-handle (as
long as we are not unlucky and don't get sucked into the first 1-handle’s critical point -
this is again an issue to be discussed more carefully soon), and then see both 1-handle
attached simultaneously to the boundary of the 0-handle.

Dimension 3: Now it gets interesting. First, we must abandon hope of embedding the 3-
manifold in R® and seeing the Morse function as the height function. So instead we will
just draw some handle decompositions and, perhaps, some level sets of the Morse func-
tions. First recall the three kinds of handles in dimension 3:
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We can put these together as follows, for a simple example:



Note that, after attaching the 2-handle, we have a ball again, so we might as well not
have attached the 1- and the 2-handle at all. l.e. these two handles can be cancelled in a
way that will be made precise in due time. (This is the convertible roof, see end of Lec-
ture 5 video for the hand gestures,) This picture is hard to look at so we can flatten it
and draw only the images of the attaching maps in the boundary of the 0-handle (identi-
fying S? with R* U co) as follows:
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Note that we could have many 1-handles, so some labelling of the feet is appropriate, and
note that we only need to draw the core of the attaching map of each 2-handle (the
image of S x {0} C S! x B') to specify the isotopy class of the attaching map. In fact,
the same could be said for 1-handles (assuming everything is oriented) but it is visually
convenient to draw the whole disk. So here is another example:

YN aQ '\f“\
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So this has three 1-handles, labelled A, B and C, and three 2-handles, labelled a, b and ¢,
and, of course, a 0-handle that is the “background” to this picture and a 3-handle that



caps everything off. First, to see that you can cap it off with a 3-handle you need to ver-
ify that the boundary is S2.

Exercise: show that this manifold is S! x S2.

I'll end here, although in the lecture | then discussed Heegaard splittings. I'll write that
up next time. Here's the video:

(YouTube link)



https://youtube.com/watch?v=ghm9PvfPLuE
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Exercise: Let ¥ be a torus with two boundary components embed-
ded in R® as in the top picture at right, and let f: ¥ — [0,1] be pro-
jection onto the vertical direction, a Morse function with two critical
points of index 1 and with a Ub being a level set. Identify ¥ with the
square-with-opposite-sides glued minus 2 disks shown below the em-
bedded picture, so that the indicated curves a, b and ¢ match up. On
the square picture, we have an automorphism ¢ : ¥ — X obtained by
rotating the square 90°. Let fo = f and let fi = fo¢. Find a generic
homotopy f; from fo to fi, constant on f71(0) and f(1). Generic Q
means that f; is Morse for all but finitely many times ¢, and when

not Morse, we have a simple birth or death of a pair of cancelling

critical points of successive index. Also, if you don't consider distinct

critical points with the same critical value as being Morse, then you should also allow fi-

nitely many times when two critical points cross. Draw the Cerf graphic for this homo-

topy, i.e. the graph in [0,1] x [0, 1] of the critical values with their indices for all ¢ € [0,1].

Heegaard splittings and Heegaard diagrams: We need three facts here that will be

proved later:

1. For any closed connected n-manifold X there is a Morse function on X with exactly

one index 0 critical point (minimum) and one index n critical point (maximum).

. Given any Morse function f: X — R, there is a homotopy of maps f:: M — R, with
fo=f, and f; Morse for all ¢, such that the critical values of f; are ordered by index.
In other words, if the indices of critical point p and q are ¢ and 7, resp., and if ¢ < 7,
then f(p) < f(q). (Note that there if f does not satisfy this property then there will
necessarily be times ¢ where f; has two critical points with the same critical value,
and these times should be isolated. We call these times “critical value crossing
times'.)

. Given a Morse function f: X — R with critical values ordered by index, a generic
choice of an adapted metric allows us to assume that all the k-handles are attached
simultaneously to the boundary of the union of the handles of index < k. In other
words, if p and g are critical points of index k with f(p) < f(g) and no critical values
in (f(p), f(q)), we can use the gradient flow to compare the free region of the
boundary of the handle for p and the attaching region of the boundary of the handle
for ¢ inside an intermediate level set f1(y) for y € (f(p), f(q)). When the metric is
chosen generically these will be disjoint, and thus we can flow from the attaching re-



gion of the handle for ¢ down along the gradient field past the handle for p and see
them as both attached to a level set below f(p).

(As a consequence of these results, one sometimes works with self-indexing Morse func-
tions, functions with the property that, for a critical point p, the index of p equals f(p).
Note that these are not quite generic because distinct critical points do not have distinct
critical values, so some might consider these not to be Morse functions, but that might
be being too nitpicky. | will not use that terminology much, but you see it a lot in 3-
manifold topology.)

Now consider a closed connected oriented 3-manifold X® with a Morse function
f: X — R and corresponding handle decomposition as in 3 above. Let y be a regular
value between the index 1 and index 2 critical values, and let A= f!(—o0,],
B = fly,00) and ¥ = f}(y). Then A is the result of attaching some number g of 1-
handles to a ball (0-handle) and ¥ = dA is a genus g surface. On B, consider the Morse
function —f; the index 2 critical points of f become index 1 criitical points for —f and
thus B is the result of attaching ¢ 1-handles to a ball and ¥ = 8B is a genus ¢ surface.
Therefore g = ¢/, so f has the same number of index 1 and 2 critical points, and both A
and B are diffeomorphic to the standard genus g handlebody (the solid object in R?
bounded by the standard embedding of a genus g surface in R?). This decomposition of
X into two solid handlebodies is called a Heegaard splitting of X.
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Thinking now of constructions of manifolds, rather than decompositions of manifolds, we
get the related notion of a Heegaard diagram. In the above figure, noting that X is dif-
feomorphic to the standard genus g surface ¥,;, we can now instead consider the Morse
functions —f on A and f on B, in which case we see both A and B as built by attaching
g 2-handles and a 3-handle to £,. In other words, X is built (or, rather, a 3-manifold dif-
feomorphic to X is built) by starting with [—1,1] x £, and attaching g 2-handles and a 3-
handle to 1 x ¥, (producing B) and then turning things upside down and attaching ¢
more 2-handles and a 3-handle to —1 x X, (producing A). This construction is completely
determined by the 2g attaching circles (simple closed curves), often labelled a,...,a, for
A and B4,...,B, for B. The a curves must be mutually disjoint and their complement in
¥, must be a 2g-punctured sphere; ditto for the 8 curves. Any such collection of simple



closed curves in £, determines a closed 3-manifold; this is a Heegaard diagram. The ex-
ample below is S x §2, again:

This is the data that is used to compute the famous Heegaard-Floer invariants of 3-mani-
folds, but that story is beyond the scope of this course.

Surgery: The comment above that, in a Heegaard diagram, the complement of the «
curves (resp. B curves) should be a 2g-punctured sphere merits further discussion. This is
a condition that guarantees that, after attaching the 2-handles along these curves, the
new boundary is §% and so we can cap off with a 3-handle. Surgery is the process by
which the boundary of a manifold changes when one attaches a handle along that bound-
ary. If X™ is a cobordism from M, to M; and we attach an n-dimensional k-handle along
an embedding ¢ : ¥ ! x B"* — M;, we get a new cobordism from M, to M,, and M, is
diffeomorphic to (M; \ ¢(S*! x B %)) U, B x S, because we “cover up” the image
of the attaching region of the handle and “expose” the free region of the handle. The free
region BF x 8" %1 is glued via ¢:S* 1 x 8" %13 M. This is (n— 1)-dimensional

(k — 1)-surgery.

In the Heegaard diagram case, we have n =3 and k=2, so that we are doing 2-dimen-
sional 1-surgery by removing a S!' x B! and replacing with B? x §°. In other words, we
cut open X along the attaching curve, leaving two new boundary components, and then
we cap off each component with a disk.

We just touched on 4-manifolds in this lecture, but in the notes I'll start that in the next
post. Here's the video (thanks Eddie)

(YouTube link)



https://youtube.com/watch?v=WFAjEj-oqo0

2012-01-27

(At the beginning of class, Eric Burgess presented a solution to the problem of seeing the
1-parameter family of Morse functions associated to projecting a particular embedding of
S to various directions, see the video at the end of this post.)

4-manifolds: Now we extend the ideas from dimension 3 to dimension 4 to do our best
to draw pictures of 4-manifolds built from handles. We start with a single 0-handle. It's
boundary is S = R3 U oo, which we draw as R®, the ambient space in which the rest of
the drawing will happen. This is just the background of our drawing - i.e. we don't really
“draw” anything, we just imply it. We will assume no handles except the final 4-handle
will have attaching maps which hit co.

A 4-dimensional 1-handle is B! x B? attached along S° x B3, a pair

of balls. We draw these balls as small balls in R®, with dotted lines @ ,,,,,, @
connecting the “feet” of each 1-handle so we know which ball goes @
with which ball. Thus the illustration at right simply describes a 0- &) ==~~~ '

handle with two 1-handles attached. Note that the new boundary,

after attaching these 1-handles, is not S® because the interior of each

ball is no longer in the boundary of the 4-manifold, and each S° x B3 has been replaced
with B! x 82, We should visualize each pair of balls as indicating “worm-holes” allowing
us to tunnel from one region of space to another along an interval’s worth of §%'s. In par-
ticular, this new boundary here is exactly the connected sum of two copies of S! x §2.
Thus we could not attach a 4-handle at this point.

A 4-dimensional 2-handle is B? x B? attached along
S! x B2, i.e. a solid torus. They can go over 1-han- @ &)
dles or not, as show in the diagram at right, involv-
ing two 1-handles and two 2-handles, one of which

goes over one 1-handle once and one of which does
not go over any 1-handles. Unfortunately just
drawing the images of the attaching maps now no longer determines the attaching maps
up to isotopy. To understand this better we now consider framings.

Framings: Consider an embedding ¢ : S¥~1 < M"™ !, Under what conditions does this ex-
tend to an embedding & : §*°! x B"* — M? An obvious necessary condition is that the
image K of the embedding ¢ should have a trivial normal bundle, and this is a sufficient
condition by the tubular neighborhood theorem. When k — 1 = 0 we always have triviality.
When k£ —1 =1 we may not have triviality if M is nonorientable (e.g. the core of a Mo-
bius band). But if M is orientable then S''s always have trivial normal bundles. Thing get



more interesting when k—1 =1 and n — 1 > 4, but we will stay away from such high di-
mensions for now.

Now, assuming K has trivial normal bundle v, there may be more than one trivialization
of v (isomorphism v — K x B"*). The standard proof of the tubular neighborhood theo-
rem extends to show that isotopy classes of trivializations of v are in one-to-one corre-
spondence with isotopy classes of extensions ® of ¢. A framing of K is precisely an iso-
topy class of trivializations of the normal bundle v. We will discuss framings in full gener-
ality next time, but for now, consider two cases:

First, n—1=0and k—1=1. So K is a pair of points in a 1-manifold. We claim that,
up to isotopy, there are exactly four framings of K. These are illustrated below:

OOOC

Next we show how each of these framings specifies a handle attachment:

Note that the two on the left are diffeomorphic, and the two on the right are diffeomor-
phic, and the distinction is orientability. This example generalizes to higher dimensional 0-
handles, with the upshot being that, if we agree that we are only working with orientable
manifolds, we do not need to specify the framing of the attaching map of a 0-handle and
need simply draw the images the attaching maps (pairs of balls). Note that we could
draw points rather than balls but that the use of balls allows us to distinguish different
curves going over a single 1-handle more easily than points would.

Next, consider n—1=1 and k—1=2. Now we are framing a simple closed curve in a
surface, and a moment's thought shows that there are only two framings, but that handle
attachment with either framing produces diffeomorphic manifolds. In fact, this phenome-



non where two distinct framings produce the same manifold will persist in all dimensions,
so we should immediately mod out by it. We leave this detail for the reader to sort out.

Finally for this post, consider n—1=1 and £—1=3. Now we are
framing a knot K in a 3-manifold M. A framing is a pair of linearly
independent normal vectors to K at each point along K (varying
smoothly along K of course). To mod out by the issue mentioned in
the preceding paragraph, we will assume that K is oriented, M s
oriented, and that the tangent to K followed by the two normal vec-
tors is an oriented basis, so that, up to isotopy, we do not need to

@

specify the second normal vector. Thus the framing is just given by a single nowhere zero

vector field along K, normal to K. After identifying v with a tubular neighborhood of K,

this can be seen as a parallel copy of K on the boundary of a tubular neighborhood, as

shown at right.

Intuitively, this is characterized up to isotopy by the number of times
it twists around K. l.e. somehow framings of K can be identified
with Z. The problem is that, in general, there is no preferred 0-fram-
ing. The best we can say in general is that the set of framings of K
is a Z-torsor, or an affine space for Z; it looks like Z but we don't
know where 0 is. Equivalently, given any framing, we can add or sub-
tract 1 to it in a consistent way to produce a new framing. We use

Y

P

the right-hand rule for the sign convention; an example of adding +1 to the previous

drawing is shown at right.

Another useful way to draw a framed knot is to adopt the convention that we always use
the blackboard framing, the framing where the pushoff is in the plane of the surface on

which the surface is drawn. Here are some examples; note that, to acheive extra twists

we introduce small kinks in K:

—
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Here's the video:

(YouTube link)



https://youtube.com/watch?v=uzUMAWb_BuA

2012-01-30

Let's discuss framings more carefully: A framing of an embedded (k — 1)-sphere K in a
(n — 1)-manifold M is an isotopy class of trivializations of the normal bundle
vK = K x R"". (So K needs a trivial normal bundle to begin with.) The difference be-
tween two trivializations is a map K — GL(n — k), but since we only care about trivializa-
tions up to isotopy, we only care about this map up to homotopy, so the difference be-
tween two framings is an element of m;_1(O(n — k)). (Here we use that GL(n — k) defor-
mation retracts onto O(n —k). Also, if k—1>1, we really mean GL"(n—k) and
SO(n —k).)

Thus the difference two framings of a knot in a 3-manifold lies in m1(SO(2)) = Z. This ex-
plains the comment last time that the set of framings is a Z-torsor. This is worth com-
paring to the case of 1-knots (embedded S''s) in a 4-manifold, in which case we have
m1(SO(3)) = Z/27Z, so there are two different ways to attach a 2-handle to a 5-manifold
along a fixed embedding of S! in the 4-manifold boundary.

Now there is a special case when the set of framings of a knot K C M? can be canoni-
cally indentified with Z, when [K]=0¢c Hi(M;Z). (In particular, when M = S3 this
holds.) In this case K = 8% for some oriented, compact surface ¥ C M, and we use this
Seifert surface ¥ to define a preferred 0-framing. (Note that algebraic topology just tells
us that K is the boundary of a singular 2-chain, but not that the 2-chain can be realized
by a smooth surface. Seifert gave an explicit algorithm for constructing such a surface
from a knot diagram when M = S3, but there is also a general smooth topology argu-
ment using a map from M~ K to S' and pulling back a regular value.) We arbitrarily
orient K and then orient ¥ so that the boundary orientation agrees with the given orien-
tation on K. Then a framing of K gives a parallel push-off K’ of K, with orientation
coming from K. Make K’ transverse to ¥ and count intersections with sign (+ means K’
goes from the negative side of ¥ to the positive side and — means the opposite). This as-
sociates an integer to the framing; this integer is otherwise known as the linking number
Ik(K,K'). (See Rolfsen, Knots and Links, for a beautiful discussion of ten different defini-
tions of linking number.) Here are some pictures to illustrate this:

/ ////



OK, now back to building 4-manifolds. We know
how to draw pictures of a 0-handle with some 1-
handles, and now we can add the 2-handles by
drawing framed knots, some of which may go over

the 1-handles. To the right is a particularly nice ex-
ample, called the Mazur manifold, involving one 0-handle, one 1-handle and one 2-han-
dle. It is contractible, roughly because the attaching circle for the 2-handle has a clasp
which, if undone, could slide off the 1-handle leaving the 2-handle only going once over
the 1-handle, and thus cancelling the 1-handle (c.f. convertible roof). But it is not diffeo-
morphic to B*, and it's boundary is a 3-manifold with the same homology as S* (a ho-
mology sphere) but nontrivial 7r;. In particular, we cannot complete this 4-manifold to a
closed 4-manifold by attaching a 4-handle; to do so we would need the boundary to be
S3. Thus we see that we need to think more carefully about surgery on 3-manifolds in
order to understand the boundaries of 4-dimensional handlebodies and know whether we
can cap them off to make closed 4-manifolds.

So what is surgery along a knot in a 3-manifold? If a M3 = X* and we attach a 2-han-
dle along ¢ : S x B — M to produce a new 4-manifold X’ with 6X’' = M’, then M’ can
be described precisely as:

M' = (M~ ¢(S' x B?)) Uy (B x S1)

Here the gluing map is labelled ¢, by which | mean ¢|g1,g1. How do we see this pictori-
ally? Let K = ¢(S* x {0}) and let v = ¢(S* x B?), a knot and a tubular neighborhood in
M. Let pu= ¢({p} x S'), the meridian curve, and let A = ¢(S* x {p}), the longitude curve.
(Here p is just some arbitrary point in S'.) The meridian p is characterized up to isotopy
by being homologically nontrivial in v but bounding a disk in v. On the other hand the
longitude X depends on the framing of K, and is in fact exactly the parallel push-off we
have been discussing above. (X is partially characterized by intersecting u once, but
that's not enough.) Then M’ can be described as the result of removing v from M and
glueing back in a solid torus so that, after gluing it back in, A now bounds a disk (the B2
in B2 x S1) while  does not. This is illustrated below:
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Basic examples (exercises)

1. 0-framed surgery on the unknot in S3 gives S! x §2. Thus if we build a 4-manifold
with a 0-handle and a 2-handle attached along the 0-framed unknot, we cannot cap
it off to a closed 4-manifold by just attaching a 4-handle.

2. +1-framed surgery on the unknot gives S3. Thus we can build a closed 4-manifold
with one 0-, one 2- and one 4-handle, with the 2-handle attached along the =+1-
framed unknot. In fact these 4-manifolds are CP* (for 41 framing) and CP? (for —1
framing).

| ended with an attempt to describe $%'s inside CP? and CP? with self-intersection +1,
but that's best left for the blog until the next post.

Here's the movie:

(YouTube link)



https://youtube.com/watch?v=f-B-JhIP32I

2012-02-01

Regarding the handle decompositions given last lecture

for CP? and CP? we observe that attaching a 2-handle
to a 0-handle with framing +1 to an unknot immediately
yields an embedded sphere with self-intersection +1. We
see this, and a more general version, as follows (and illus-
trated at right in the half-dimensional version): If we at-
tach a 2-handle B? x B? to a 4-manifold X along a null-
homologous knot K C X with framing n, and K = X%
for some surface ¥ C 80X, then the interior of ¥ can be
pushed in to the interior of X so as to meet 8X trans-
versely along K. Then gluing the core B? x {0} of the
handle to ¥ we get a smooth closed surface ¥’ c X/,
where X' is the result of attaching the handle to X.

The self-intersection of a surface in a 4-manifold is the

intersection of the surface with a nearby parallel copy of
itself, counted with signs. We can push X off itself in X
without self-intersections, and we can push B? x {0} off itself in B? x B? without self-in-
tersections, each restricting to a parallel push-off of K in dX. The difference between
these push-offs (literally their intersection number in the boundary of a tubular neighbor-
hood of K) is exactly the framing n of K (yes, the signs do work out right). Thus the
self-intersection of ¥, denoted ¥’ - Y/, is exactly equal to n. In the case of an unknot, X
is a disk, so X' is a sphere.

Similarly, if one attaches two 2-handles along nullhomologous knots, each one produces a
closed surface, and the intersection number between the two surfaces is the linking num-
ber between the knots.

Ascending and Descending manifolds: We have been drawing handle diagrams as if all
the handles were attached “at once”, i.e. as if the corresponding critical points had the
same value. But certainly in some instances this cannot be done; as in our examples
where 2-handles run over 1-handles. To understand better when we can or cannot do this,
we need to see larger handles than we have seen so far. In our argument that a Morse
function on a manifold gives a decomposition of the manifold into handles, each handle is
contained in a small neighborhood of the critical point, and “most” of the manifold is
made up of products.



Instead, consider a gradient-like vector field V for a Morse function f and a critical point
p. Then the ascending manifold for p, A, is the union

of {p} and all flow lines whose backward-time limit is p, A‘L:m
9 |

while the descending manifold for p, D,, is the union

of {p} and all flow lines whose forward-time limit is p. In
local coordinates near D in which D
f=—ai—...—axj+.. .2} +...22, Dyisthe zy,...,z)- €
space and A, is the zj;1,...,z,-space. Near every other
point in D, (resp. A,), forward (resp. backward) flow
along V for some time gives a local diffeomorphism into such a local coordinate chart
around p, and hence we see that D, is a smooth k-dimensional submanifold and 4, is a
smooth (n — k)-dimensional submanifold. They intersect transversely at p. If X is closed,

so that there is no boundary to run into, they are diffeomorphic to R* and R**.

Now consider a cobordism X from M, to M; with
Morse f: X — [0,1] and critical points pi,...,pm,
and suppose that all the ascending and descending
manifolds of distinct critical values are disjoint.
(Descending manifolds are always disjoing, and

likewise ascending manifolds are always disjoint,
but a point can be on the ascending manifold of
one critical point and the descending manifold of

another.) In this case, the attaching maps for the
handles corresponding to the critical points all flow
all the way down to Mj, and so we can see X as built from [0,1] x M, with all the han-
dles attached simultaneously to {1} x Mj. In fact, the handle B* x B** corresponding to
critical point p; is precisely a small neighborhood of D,, U A,, with D,, being the core
B* x {0} and A,, being the co-core {0} x B"*.

In the next post we will investigate circumstances under which we can arrange for this
disjointness to occur.

(YouTube link)



https://youtube.com/watch?v=hPs8ZF_iIns

2012-02-03

Consider two critical points p,q € X of a Morse function f on X", of indices k and [, re-
spectively, with f(p) < f(¢) and no critical values in between. We want to investigate
conditions under which we can assume that their ascending and descending manifolds, A4,
and D,, can be assumed to be disjoint. Of course, 4, and D, are not defined until we
choose a metric g or, at least, a gradient-like vector field V.

Note first that, in between f~1(f(p)) and f~1(f(q)), everything is a product and is deter-
mined by behavior in f1(y) for some regular y< (f(p), f(q)). Thus we look at
Ay = A, N f(y) =S * 1 and DY = D, N f1(y) = S, all inside the (n — 1)-dimensional
manifold f~(y).

Next we note that any isotopy of A} (resp. Dj) can be realized by homotoping the vector
field, and thus the metric g, inside f1[y — 2¢,y — €] (resp. f 1y + e,y + 2¢]). Again, this
uses the product structure on fl[y —2¢,y — €] and just spreads the isotopy out across
this product. Furthermore, any homotopy of g or V" moves 4; and D} by (independent)
isotopies in f~!(y). Thus we can apply the transversality theorem to say that g (or V)
can be homotoped to make Ay N Dy transverse in f~1(y) and that, if they are transverse,
a small perturbation of g or V will keep them transverse.

So now we assume that A) and D} intersect transversely in f~'(y) and now we count the
dimension of their intersection. Recall that, for transverse intersections, the mantra is
“codimensions add”. A; has dimension n — k —1 in the (n — 1)-manifold, hence codimen-
sion k. Dy has dimension [ — 1, hence codimension n — 1. Thus Aj N D} has codimension
n+k —1, hence dimension n—1— (n+k—1)=1—k—1. This is negative if I <k+1 or
I < k. Thus we can assume that A, D, =0 as long as | < k.

As a corollary, if a cobordism X has a Morse function with all critical points of the same
index, then X can be built as a handlebody with all the handles attached at once to the
bottom level.

Note that if I =k + 1 then A) N D) has dimension 0, i.e. points, in which case we have
isolated flow lines from ¢ down to p. In terms of handles, the handle for q ‘goes over” the
handle for p; we have seen many examples of this when k=1 and [ = 2.

Now we want to consider what sorts of intersections between A, and D, to expect as we
move through a 1-parameter family of Morse functions and gradient-like vector fields.
The first case to consider is where f stays fixed, but the vector field varies as V;, t € [0, 1]
. Now consider A, and D, in [0,1] x X, defined by A, N{t} x X = {t} x Ap:, where A,;



is the ascending manifold for p with respect to V; (and similary for D,. A similar argu-
ment to the preceding case shows that, if we want to move A, through an isotopy in
[0,1] x f~'(y) (remaining transverse to the slices {¢t} x X), we can do this by homotoping
the homotopy V; in a slab f[y — 2¢,y — €] (and comparable statement for D,. And, simi-
larly, any homotopy of the homotopy V; moves these manifolds by isotopies. Thus, again,
transversality applies and we can assume A, N D, is transverse.

Now when we count dimensions we discover that this intersection, if transverse, should
be empty if k < I. Thus, for example, in a 1-parameter family we do not expect a critical
point of index 1 to suddenly develop a flow line down to a critical point of index 2. But,
if k=1, then we expect 4,ND,N([0,1] x £ '(y)) to have dimension 0. This means that
at isolated times, there will be a single point of intersection between Ag,t and Dz,t or,
equivalently, a single flow line from ¢ down to p. Such events are called handle slides.
Below is a simple example that justifies this term; we will discuss handle slides more care-
fully next time.

(@

(YouTube link)



https://youtube.com/watch?v=dhZM8suhYV8

2012-02-06

We spent today’s class with students presenting solutions and/or half-baked ideas about
exercises. We had a complete solution to all of the various S! x §? problems. The prob-
lem of showing that the space of metrics adapted to a fixed Morse function is connected
(by which | really meant path-connected) was reduced to the following question:

Let f be a standard Morse model function f =3 +x? on R" and let ¢ : R* — R" be any
orientation-preserving diffeomorphism sending 0 to 0 and respecting f, ie. fod=f.
Show that ¢ is isotopic to the identity through a 1-parameter family of maps fi with

fi(0) =0 and fio ¢ = fi.

2 is stable was to use the fact that any function

A suggestion for showing that f(z) ==z
(in particular, a 1-parameter family f;) can be approximated by polynomials. Another ap-
proach suggested was to show that f;, for small ¢, has “the same kind of singularity” that

f has, where “same kind" means f'(z:) = 0 and f"(z:) > 0.

That's it.



2012-02-08

We have seen that, in a 1-parameter family V; of gradient-like vector fields for a fixed
Morse function f, we should generically expect isolated times at which ascending and de-
scending manifolds of critical points of the same index intersect in intermediate regular
levels. It is not hard to generalize this to the case where the function varies as well, in
which case we have a pair (f:, ;). As long as f; remains Morse and critical values do not
cross, we can apply all the same transversality arguments from before, letting A, be the
descending manifold in [0,1] x X of an arc of critical points labelled p.

We also identified these isolated times as handle slides and showed one example where

the total dimension is n = 2 and the critical points have index k = 1. We want to investi-
gate this more generally.

The first point to make is that, in calling these events “handle slides”’, we are really de-
scribing a particulation operation on handle attaching maps (framed embedded spheres),
and claiming that this operation is exactly how the handle attaching maps change from
before one of these isolated time events to after the event. So first | will attempt to de-
scribe this operation.

Exercise: Generalize the following examples to an operation that makes sense for any di-
mension n > 2 and any index k with 1 <k <n. We exclude 0 and n because you need
some ascending and some descending manifold to get the discussion started. We exclude
1 because we have already discussed it and because it is hard to make sense of many
smooth operations on 0-manifolds; e.g. what is the connected sum of two §%'s? The op-
eration we are looking for should take two framed S*!'s, K, and K,, in a (n — 1)-mani-
fold, and produce a new framed S*~' K which results from sliding ¢ over p.

Example: n=3, k=2 : Here K, and K, are framed S''s in a surface M?, in which case
there is only one framing so we ignore the framing completely. The resulting K is an em-
bedded S* in M such that K,U K,U K] together bound a pair of pants. This is illus-
trated below:



In this lecture | then proceeded to describe the 4-dimensional version n =4, k=2, but
once again the exposition improved with the review in the next lecture, so I'll save it for

the next post.

(YouTube link)



https://youtube.com/watch?v=mpbB3dZmSoo

2012-02-10

Today's goal is to present the handle slide move in dimension 4, for 2-handles, and then
justify this move in both dimensions 3 and 4. | claim that, in both the cases n =3,k =2
and n =4,k = 2, the move can be described as follows (bearing in mind that the framing
is irrelevant when n = 3): Let K,, K, C M™ ! be the framed descending S''s for index 2
critical points p and ¢, resp., with f(p) < f(q), and M a level set below p and ¢g. Then the
result of sliding g over p is that K, is replaced by K, where K, UK,UK, =08% and
¥ C M is an embedded pair of pants realizing the given framings of K, and K,. The
framing of K, that results from the slide is exactly the framing coming from X. Below is
an example when n = 4, so that the drawing takes place in a 3-manifold:

S //(h““\\ N
O6-CHO)- C 0

Now we want to simultaneously justify the following two statements: (1) If two handle di-
agrams are related by a handle slide then they describe diffeomorphic manifolds. (2) If
two Morse functions (with gradient-like vector fields) are related by a homotopy in which
the function remains Morse, then their corresponding handle diagrams are related by han-
dle slides. To do this, consider two critical points p and ¢ of the same index k with
f(p) < f(g) and let us follow their ascending and descending manifolds in two different
regular level sets: f~(yo) and f(y1), with yo < f(p) < 51 < f(g). We focus on times just
before and just after a time ¢, at which there is a single point of intersection between D,
and A, in f'(y;1) (a transverse intersection between D, and A,). In f~'(y;), DY moves
around by an isotopy, crossing A3 (transversely in time) at time ¢,. But in f7'(1), D,
makes a discrete jump somehow from before t, to after. As D} crosses A}, it sweeps out
an annulus punctured once by Aj. Removing a disk neighborhood of this puncture from
the annulus, we get a pair of pants ¥ C f!(y;) \ A% with boundary the union of D} be-
fore ty, DY after ty, and the boundary of the disk we removed from the annulus. Since ¥
is disjoint from A,, it can flow down to f7(ys). The “before” and “after’versions of D}



flow down to become “before” and “after” attaching spheres for g (framed by X) while the
boundary of the disk we removed flows down to become a parallel push-off of the attach-
ing sphere for p.

This demonstrates directly that the singular event in the Morse function movie corre-
sponds to a handle slide in the handle diagram. To go the other way, note that the previ-
ous paragraph also provides a construction of a Morse function movie that corresponds to
a given hande slide; this, together with the fact that handle diagrams uniquely determine
manifolds up to diffeomorphism, shows that, when two diagrams are related by handle
slides, then they describe diffeomorphic manifolds.

| claim that the above argument also works in higher dimensions and different indices,
but leave that to the reader to sort out. Also, as a suggestion, it might be useful to con-
struct the pair of pants and its higher-dimensional generalizations as a framed cobordism
in [0,1] x f~Y(y), with a single critical point for the Morse function arising from projec-
tion to the [0, 1] factor.

(YouTube link)



https://youtube.com/watch?v=fQ7qaFP4AzA

2012-02-13

We have been a bit unclear, when discussing handle slides, about whether we are think-
ing of families (f:, V) of Morse functions paired with gradient-like vector fields or of a
fixed Morse function f with a family of vector fields V;. | claim that this distinction is not
important due to the following fact:

Lemma: If f;: X — [0,1] is Morse for all ¢ (with distinct critical values for all ¢), with
t € [0,1], then there exist isotopies ¢: : X — X and ¢ : [0,1] — [0,1], with ¢y and 1 iden-
tity maps, such that fi = ;o fo o ¢.

Thus, as long as there are no crossings of critical values, we may pull everything back by
¢+ and 1, to treat f; as constant in t. When there are crossings, in which case we have no
hope of making the function constant in time, we can arrange that no handle slides occur
in a short time interval around the crossing.

It is obvious that two Morse functions cannot in general be connected by a path of Morse
functions, since critical points remain discrete and therefore the number of critical points
would need to be constant. However, they can be connected by a generic homotopy,
which we define as follows:

Definition: a generic homotopy is a homotopy f:: X — [0,1], t € [0,1], between Morse
functions fy and fi such that, near every point p € X and time ¢y, there exist coordinates
7 around tp € [0,1] and 7-dependent coordinates z],...,z], around p € X, and 7-depen-
dent coordinates y” around f,(p), with respect to which f; has one of the following three
local models (in which we suppress the dependence of the z;'s and y on 7):

1. (z1,...,on) — x1; i.e. there is no singularity here.

2. (z1,...,zn) > —2i —...—xh+ 24 +...+a2; i.e. pis an index k Morse singularity
for f,, and there is a path p;, t € (ty — €,to + €), with p = py such that p; is an index
k Morse singularity for f;.

3. (x1y.entn) = —23 — . - a4+ 13 — 7o + 22, + ... 22; i.e. a birth or death of

a pair of critical points of index k and k + 1 occurs at p at time t,.

The claim, which we offer without proof or perhaps defer to a later date, is that generic
homotopies are generic and stable. (This emphasizes, of course, the poor choice of the
adjective “generic”’ in the definition.) Here stable means that a generic homotopy is still a
generic homotopy after a small perturbation, and generic means that any homotopy can
be perturbed to generic by an arbitrarily small perturbation.



Thus, between any two Morse functions, we can always find a homotopy which remains
Morse except at isolated times when a birth or death occurs (and, if we insist that Morse
functions have discrete critical values then we also count critical value crossings as spe-
cial isolated non-Morse events).

Immediately after a birth has occurred, producing critical points p and g with indices k
and k+ 1, respectively, then f(p) < f(q) and there are no critical values in (f(p), f(q))-
Also, there exists a gradient-like vector field with respect to which there is a single flow
line from q down to p; i.e. AN DY is a single point in £~ !(y) for some y € (f(p), f(q)). In
terms of handles, this means that the handle attaching sphere S* for ¢ “goes over’ the
handle B* x B"* for p once, intersecting the belt sphere {0} x S"*~! at one point. We
have already examples of such diagrams.

In the next post I'll explain the converse of this, namely that if a (k¥ + 1)-handle goes over
a k-handle once then we can cancel them; Gompf and Stipsicz give a non-Morse theory
proof which is more basic, but we will construct a generic homotopy cancelling the two
critical points.

(YouTube link)



https://youtube.com/watch?v=fMKio1SdRoc

2012-02-15

Note that the assertion that A) and D}, the ascending and descending spheres for critical
points p and ¢ in an intermediate regular level y, meet at a single point, is equivalent to
the assertion that there is a unique gradient flow line from g down to p.

In this entry we want to sketch the proof of the following:

Theorem: If f: X — [0,1] is Morse with exactly two critical points p and ¢ with a unique
gradient flow line from ¢ down to p, with ascending and descending manifolds meeting
transversely, then there is a generic homotopy f; from fo = f to fi which cancels p and q.

Sketch of proof: Here's what | send in lecture, but actually it's subtly wrong: Find an
arc A = [0,1] embedded in X containing this unique flow line as its middle third [1/3,2/3]
, with ¢ at 1/3 and p at 2/3, and with [0,2/3) contained in the descending manifold for g
and (1/3,1] contained in the ascending manifold for p. Thus, up to reparametrization, f|,
looks like f(z) = 3 — z. Now we claim that there is a tubular neighborhood v of A4, with
coordinate zx+1 on A and coordinates z1,..., Tk, Tki2,...,Tn, Where k is the index of p,
such that f|, = -z} —... —z}+ ) | —zr1 + 21 5, + ...+ 22. The idea is that, along the
given flow line, A, and D, intersect transversely, so that the descending coordinates
r1,...,zr come from D, and the ascending coordinates zi-2,...,z, come from A,. Once
we have this local model, we can cancel the critical points using m%H — tzre1. This is il-
lustrated below:

So what is wrong with this argument? The first problem is that, yes, one may find a
local patch (in this case a tubular neighborhood of an arc) in which there is a certain
local model (that much is correct in the above argument), but then one cannot blithely
apply a polynomial perturbation because polynomials are not compactly supported, and
we should be constructing a homotopy which is constant outside the given patch. Thus



one should cut if off with a bump function. But then, when cutting things off with a
bump function, one has the potential to accidentally create new critical points, as illus-
trated in this picture:

So | owe a proper sketch of this proof - the point is that one really does need to work
with the full descending manifold for g and the full ascending manifold for p. [



