sortix-mirror/sortix/process.cpp

322 lines
6.9 KiB
C++

/******************************************************************************
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along
with Sortix. If not, see <http://www.gnu.org/licenses/>.
process.cpp
Describes a process belonging to a subsystem.
******************************************************************************/
#include "platform.h"
#include <libmaxsi/memory.h>
#include <libmaxsi/string.h>
#include "thread.h"
#include "process.h"
#include "memorymanagement.h"
#include "initrd.h"
#include "elf.h"
#include "syscall.h"
using namespace Maxsi;
namespace Sortix
{
bool ProcessSegment::Intersects(ProcessSegment* segments)
{
for ( ProcessSegment* tmp = segments; tmp != NULL; tmp = tmp->next )
{
if ( tmp->position < position + size &&
position < tmp->position + tmp->size )
{
return true;
}
}
if ( next ) { return next->Intersects(segments); }
return false;
}
ProcessSegment* ProcessSegment::Fork()
{
ProcessSegment* nextclone = NULL;
if ( next )
{
nextclone = next->Fork();
if ( nextclone == NULL ) { return NULL; }
}
ProcessSegment* clone = new ProcessSegment();
if ( clone == NULL )
{
while ( nextclone != NULL )
{
ProcessSegment* todelete = nextclone;
nextclone = nextclone->next;
delete todelete;
}
return NULL;
}
next->prev = nextclone;
clone->next = nextclone;
clone->position = position;
clone->size = size;
return clone;
}
Process::Process()
{
addrspace = 0;
segments = NULL;
sigint = false;
parent = NULL;
prevsibling = NULL;
nextsibling = NULL;
firstchild = NULL;
firstthread = NULL;
mmapfrom = 0x80000000UL;
pid = AllocatePID();
}
Process::~Process()
{
ResetAddressSpace();
// Avoid memory leaks.
ASSERT(segments == NULL);
// TODO: Delete address space!
}
void Process::ResetAddressSpace()
{
ProcessSegment* tmp = segments;
while ( tmp != NULL )
{
Memory::UnmapRangeUser(tmp->position, tmp->size);
ProcessSegment* todelete = tmp;
tmp = tmp->next;
delete todelete;
}
segments = NULL;
}
Process* Process::Fork()
{
ASSERT(CurrentProcess() == this);
Process* clone = new Process;
if ( !clone ) { return NULL; }
ProcessSegment* clonesegments = NULL;
// Fork the segment list.
if ( segments )
{
clonesegments = segments->Fork();
if ( clonesegments == NULL ) { delete clone; return NULL; }
}
// Fork address-space here and copy memory somehow.
clone->addrspace = Memory::Fork();
if ( !clone->addrspace )
{
// Delete the segment list, since they are currently bogus.
ProcessSegment* tmp = clonesegments;
while ( tmp != NULL )
{
ProcessSegment* todelete = tmp;
tmp = tmp->next;
delete todelete;
}
delete clone; return NULL;
}
// Now it's too late to clean up here, if anything goes wrong, the
// cloned process should be queued for destruction.
clone->segments = clonesegments;
// Remember the relation to the child process.
clone->parent = this;
if ( firstchild )
{
firstchild->prevsibling = clone;
clone->nextsibling = firstchild;
firstchild = clone;
}
else
{
firstchild = clone;
}
// Fork the file descriptors.
if ( !descriptors.Fork(&clone->descriptors) )
{
Panic("No error handling when forking FDs fails!");
}
Thread* clonethreads = ForkThreads(clone);
if ( !clonethreads )
{
Panic("No error handling when forking threads fails!");
}
clone->firstthread = clonethreads;
// Copy variables.
clone->mmapfrom = mmapfrom;
// Now that the cloned process is fully created, we need to signal to
// its threads that they should insert themselves into the scheduler.
for ( Thread* tmp = clonethreads; tmp != NULL; tmp = tmp->nextsibling )
{
tmp->Ready();
}
return clone;
}
Thread* Process::ForkThreads(Process* processclone)
{
Thread* result = NULL;
Thread* tmpclone = NULL;
for ( Thread* tmp = firstthread; tmp != NULL; tmp = tmp->nextsibling )
{
Thread* clonethread = tmp->Fork();
if ( clonethread == NULL )
{
while ( tmpclone != NULL )
{
Thread* todelete = tmpclone;
tmpclone = tmpclone->prevsibling;
delete todelete;
}
return NULL;
}
clonethread->process = processclone;
if ( result == NULL ) { result = clonethread; }
if ( tmpclone != NULL )
{
tmpclone->nextsibling = clonethread;
clonethread->prevsibling = tmpclone;
}
tmpclone = clonethread;
}
return result;
}
void Process::ResetForExecute()
{
// TODO: Delete all threads and their stacks.
// TODO: Unmap any process memory segments.
}
int Process::Execute(const char* programname, CPU::InterruptRegisters* regs)
{
size_t programsize = 0;
byte* program = InitRD::Open(programname, &programsize);
if ( !program ) { return -1; }
addr_t entry = ELF::Construct(CurrentProcess(), program, programsize);
if ( !entry )
{
Log::PrintF("Could not create process '%s'", programname);
if ( String::Compare(programname, "sh") == 0 )
{
Panic("Couldn't create the shell process");
}
return Execute("sh", regs);
}
// TODO: This may be an ugly hack!
// TODO: Move this to x86/process.cpp.
regs->eip = entry;
regs->useresp = CurrentThread()->stackpos + CurrentThread()->stacksize;
regs->ebp = CurrentThread()->stackpos + CurrentThread()->stacksize;
return 0;
}
int SysExecute(const char* programname)
{
// TODO: Validate that filepath is a user-space readable string!
// This is a hacky way to set up the thread!
return Process::Execute(programname, Syscall::InterruptRegs());
}
pid_t SysFork()
{
// Prepare the state of the clone.
Syscall::SyscallRegs()->result = 0;
CurrentThread()->SaveRegisters(Syscall::InterruptRegs());
Process* clone = CurrentProcess()->Fork();
if ( !clone ) { return -1; }
return clone->pid;
}
pid_t SysGetPID()
{
return CurrentProcess()->pid;
}
pid_t SysGetParentPID()
{
Process* parent = CurrentProcess()->parent;
if ( !parent ) { return -1; }
return parent->pid;
}
pid_t nextpidtoallocate;
pid_t Process::AllocatePID()
{
return nextpidtoallocate++;
}
void Process::Init()
{
Syscall::Register(SYSCALL_EXEC, (void*) SysExecute);
Syscall::Register(SYSCALL_FORK, (void*) SysFork);
Syscall::Register(SYSCALL_GETPID, (void*) SysGetPID);
Syscall::Register(SYSCALL_GETPPID, (void*) SysGetParentPID);
nextpidtoallocate = 0;
}
addr_t Process::AllocVirtualAddr(size_t size)
{
return (mmapfrom -= size);
}
}